Реферат: Застосування векторів до розв язування простих задач на площині та в просторі Рівняння та нерів

Зауваження. Властивість інваріантності порядку алгебраїчної лінії на площині чи поверхні не відноситься до різних рівнянь, якими може задаватися лінія чи поверхня в одній і тій же системі координат. Хоча такі рівняння є еквівалентними, серед них можуть бути рівняння різних степенів і навіть такі, які не мають вигляду (3.5) чи (3.6). Дійсно, наступні три рівняння визначають коло радіуса з центром в початку координат:

3.2.3. Лінії і фігури на площині

А. Лінії в прямокутній системі координат.

Між точками площини у декартовій (прямокутній) системі координат і парами дійсних чисел – координатами точок встановлена взаємно однозначна відповідність.

Як було показано в п.3.2.1, лінія на площині може задаватися або рівнянням

або

.

У першому рівнянні величина виражена явно через , тому таке рівняння називають явним рівнянням лінії, а в другому рівнянні - неявним, бо в ньому не виражено явно через . Слід зауважити, що не завжди вдається з неявного рівняння одну із змінних виразити через іншу. Проте це не перешкода для дослідження лінії за її рівнянням, хоча ці дослідження, як правило, більш складні, ніж у випадку явного задання лінії рівнянням.

Зрозуміло, що координати будь-якої точки, яка належить лінії, задовольняють її рівняння, а координати точки, яка не належить лінії, не задовольняють його. Таке рівняння і називається рівнянням лінії.

Приклад 1. Рівняння , де - дійсне число, визначає лінію, абсциса кожної точки якої дорівнює , а координата може набувати будь-яких значень між і . Таку властивість має пряма лінія, кожна точка якої віддалена від осі на величину . Зрозуміло тепер, що рівнянням цієї лінії є пряма, паралельна осі і розміщена на віддалі від неї.

Аналогічно, рівняння є прямою, паралельною осі і віддаленою від цієї осі на величину . Очевидно, що рівняння і є відповідно рівняннями осей і .

Приклад 2. Із шкільного курсу математики відомо, що рівняння , де і - числа, є рівнянням прямої з кутовим коефіцієнтом і відсікає на осі відрізок .

Приклад 3. Напишемо рівняння множини точок, однаково віддалених від осі і від точки .

Р о з в ‘я з о к. Згідно з умовою задачі (рис.3.1), де - точка, що належить кривій. Очевидно, що , а є віддаллю між двома точками площини; тоді . Отже, . Піднісши обидві частини рівності до квадрата, одержимо

.

Графіком цієї лінії є парабола.

Важливою задачею є знаходження точки перетину двох ліній. Нехай дві лінії задані рівнянням

Рис.3.1 і .

Якщо ці лінії перетинаються, то існує точка, спільна для обох ліній. Тому її координати повинні задовольняти обидва рівняння. Отже, для знаходження точки їх перетину треба розв’язати систему рівнянь:

Може виявитись, що ця система має кілька дійсних розв’язків. Це означатиме, що ці дві лінії перетинаються в такій самій кількості точок. Якщо система рівнянь не має дійсних розв’язків, то задані дві лінії не перетинаються, тобто не мають спільних точок.

Приклад . При яких значеннях параметра лінії

і

мають лише одну спільну точку?

Р о з в ’ я з о к. Для знаходження спільних точок розглянемо систему рівнянь:

З другого рівняння маємо . У результаті підстановки значення у перше рівняння одержимо

К-во Просмотров: 317
Бесплатно скачать Реферат: Застосування векторів до розв язування простих задач на площині та в просторі Рівняння та нерів