Реферат: Затухание ЭМВ при распространении в средах с конечной проводимостью

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет

им. В.Н. Каразина

Радиофизический факультет

КУРСОВАЯ РАБОТА

ПО ЭЛЕКТРОДИНАМИКЕ

«Затухание ЭМВ при распространении в средах с конечной проводимостью»

Руководитель:

Колчигин Н.Н.

Студент группы РР-32

Бойко Ю.В.

Харьков 2004

Содержание

Введение. 4

Основная часть. 5

1. Вывод уравнений для плоских волн. 5

2. Связь характеристик распространения с параметрами среды.. 9

3. Вычисление затухания в данной среде. 14

Список использованной литературы.. 15

ЗАДАНИЕ

1.Изучить общие сведения и формулы.

2.Построить зависимость электрической компоненты поля от глубины проникновения.

3.Вычислить затухание на глубине Н=0,5 м, l=10 м, в пресной воде (e=80, s=10-3 См/м)

Введение

Распространение электромагнитных волн широко рассматривается в литературе, но в ней большое внимание уделяется распространению волн в диспергирующих средах и законам геометрической оптики. В данной работе рассматривается связь характеристик распространения с параметрами среды и затухание элекромагнитных волн в средах с конечной проводимостью
Основная часть

1. Вывод уравнений для плоских волн

Рассмотрим электромагнитный волновой процесс, векторы и которого могут быть представлены в виде

=(x,t), =(x,t) (1.1)

Рис. 1.1. Направление распространения плоской волны

Здесь (рис. 1.1.) есть расстояние от начала координатной системы до плоскости


а является постоянным единичным вектором. Так как производные по координатам будут равны и т. д., то

(1.2)

(1.3)

Следовательно, для плоской волны уравнения Максвелла принимают вид

(1.4)

,

Последние два уравнения означают независимость проекций и на направление распространения от координаты x, т. е. Ex =const и Hx =const в данный момент времени. Исследуем их по­ведение во времени. Для этого второе уравнение (1.4) умножим скалярно на :

Так как

то

и

или , т.е. dHx = 0, Hx = const. Для исследования поведения Ex умножим скалярно первое из уравнений (1.4) на :

Так как , получаем

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 490
Бесплатно скачать Реферат: Затухание ЭМВ при распространении в средах с конечной проводимостью