Реферат: Затухание ЭМВ при распространении в средах с конечной проводимостью
Таким образом, при волновое число k комплексно. Обозначим k=a+ib, где a — фазовая константа, b — коэффициент затухания. Тогда
(2.3)
Следовательно, при р=iw имеет место волновой процесс с затуханием, если .
Исследуем фазовую скорость волны в среде с конечными e и s. Поскольку волновое число комплексно: k=a+ib, имеем
(2 считаем равным нулю).
В общем случае 1 также комплексно: ,
где a, b, , q — действительные числа. Отсюда получаем выражение фазовой скорости
Действительно, так как представляет скорость, с которой движется плоскость постоянной фазы
=const
то
откуда
Для определения степени затухания и фазовой скорости нужно вычислить a и b. Из уравнений (2.3) получаем
Введем обозначение
тогда
или
Здесь нужно оставить знак +, так как a — действительное число
(2.4)
Аналогично получим для b
(2.5)
Отсюда находим фазовую скорость
(2.6)
Зависимость фазовой скорости от частоты сложная: если e, m, s не зависят от частоты, то с увеличением w фазовая скорость увеличивается, т. е. в сложной волне гармоники убегают вперед.
Рассмотрим зависимость поглощения b, определяемого равенством (2.5), от электрических характеристик среды. Член представляет отношение , так как . Следовательно,
Но , поэтому при tgd<<1
Ограничившись двумя членами разложения, получим
(2.7)
Следовательно, по поглощению волны можно определить tgd:
при (единица длины) получаем
Измеряется b в неперах
или в децибелах
где P — мощность.