Шпаргалка: Электронные цепи и приборы (шпаргалка)
Зависимость ВАХ кремниевого диода от температуры (t) показана на рисунке.
Из рис. следует, что ход прямой ветви ВАХ при изменении (t) изменяется незначительно. Это объясняется тем, что концентрация основных носителей заряда при изменении температуры (t) практически почти не изменяется, т.к. примесные атомы ионизированы уже при комнатной t.
Количество неосновных носителей заряда определяется t и поэтому ход обратной ветви ВАХ сильно зависит от t, причем эта зависимость резко выражена для Ge диодов. Величина U пробоя тоже зависит от t. Эта зависимость определяется видом пробоя p-n перехода. При электрическом пробое за счет ударной ионизации возрастает при повышении t. Это объясняется тем, что при повышении t увелич-ся тепловые колебания решетки, уменьш-ся длина свободного пробега носителей заряда и для того, чтобы носитель заряда приобрел энергию достаточную для ионизации валентных связей, надо повысить напряженность поля, т.е. увеличить приложенное к p-n переходу обратное U . При тепловом пробое Uпроб при повышении t уменьшается.
В некотором интервале t для Ge диодов пробой чаще всего бывает тепловым (ширина ЗЗ Ge невелика), а для Si диодов – электрическим. Это определяет значения при заданной t. При комнатной t значения для Ge диодов обычно не превышают 400В , а для Si – 1500В.
9. Стабилитрон.
рис.1. рис. 2.
Обратная ветвь ВАХ, показанной на рис. 1, т.е. явление пробоя p-n перехода, можно использовать для целей стабилизации U , пользуясь тем обстоятельством, что до тех пор пока пробой носит электрический характер характеристика пробоя полностью обратима. Полупроводник. диоды, служащие для стабилизации U , называются стабилитронами (С).
Как видно из ВАХ, в области пробоя незначительные изменения обратного U приводят к резким изменениям величины обратного I .
Предположим, что диод, имеющий такую характеристику, включен в простейшую схему, показанную на рис. 2, причем рабочая точка находится в той области ВАХ, где при изменении тока U практически остается постоянным.
В этом случае, если изменяется входное напряжение U , то изменяется I в цепи, но т.к. U на диоде при изменении I остается постоянным (изменяется R диода), то и U в точках а, б – постоянно. Если параллельно к диоду к точкам а, б подключить R нагрузки, то U на нагрузке тоже не изменится.
С изготовляются из кремния (Si ). Это связано с тем, что в C может быть использована только электрическая форма пробоя, которая явл. обратимой. Если пробой перейдет в необратимую тепловую форму, то прибор выйдет из строя. Поэтому величина Iобр в C ограничена допустимой мощностью рассеивания Pрас = Uобр ·Iобр .
Т.к. ширина запрещенной зоны Si больше, чем у германия, то для него электрическая форма пробоя перейдет в тепловую при больших значениях обратного I – отсюда целесообразность выполнения C из Si . Степень легирования Si , т.е. величина его удельного сопротивления ρ , зависит от величины стабилизируемого U , на которое изготовляется диод. С для стабилизации низких U изгот-ся из Si с малым удельным R ; чем выше стабилизируемое R , тем из более высокоомного материала выполняется диод. Изменение стабилизируемого U от нескольких вольт до десятков вольт может быть достигнуто изменением удельного R Si .
Основным параметром C явл. U стабилизации Uстаб и температурный коэффициент U ТКН, характеризующий изменение U на C при изменении температуры (t) на 1˚С, при постоянном токе.
ТКН может принимать, как положит., так и отриц. значения в зависимости от влияния t на U пробоя Uпроб . Для низковольтных С, кот. выполняются из низкоомных полупроводников, пробой имеет туннельный характер, а т.к. вероятность туннельного перехода электронов возрастает с увеличением t, т.е. Uпроб падает, то низковольтные C имеют отриц. ТКН.
Для высокоомных стабилитронов ТКН положителен.
где U – напряж. на диоде, T – температура.
10. Варикап.
Действие варикапов (В) основано на использовании емкостных свойств р-п перехода.
Обычно используется зависимость величины барьерной емкости Сзар от U в области обратных напряжений. В общем виде зависимость величины зарядной емкости от U имеет вид;
Сзар ≈А(φк -U)-υ ,
где А – постоянная,
φк – высота потенциального барьера,
U – внешнее напряжение,
υ = 1/2 – для резких переходов,
υ = 1/3 – для плавных переходов.
рис. 1.
Эта зависимость изображена на рис. 1, где сплошной линией показана характеристика плавного перехода, а пунктирной – резкого перехода.