Шпаргалка: Электронные цепи и приборы (шпаргалка)
Очевидно, что в качестве управляемой емкости может работать любой полупроводниковый диод, при условии, что величина его зарядной емкости достаточно велика. К специальным параметрическим диодам, работающим в параметрических усилителях на высоких и сверхвысоких частотах, предъявляются повышенные требования: они должны обладать сильной зависимостью емкости от U и малым значением сопротивлением базы для повышения максимальной рабочей частоты.
11. Высокочастотные диоды.
В высокочастотных полупроводниковых диодах так же, как и в выпрямительных диодах, используется несимметричная проводимость p-n перехода.
Они работают на более высоких частотах, чем выпрямительные диоды (до сотен МГц ), и подразделяются на универсальные и импульсные. Универсальные ВЧ диоды применяются для получения высокочастотных колебаний тока одного направления, для получения из модулированных по амплитуде высокочастотных колебаний – колебаний с частотой модуляции (детектирование), для преобразования частоты. Импульсные диоды применяются как переключающий элемент в импульсных схемах.
При работе полупроводникового диода на высокой частоте большую роль играет емкость перехода, обусловливающая инерционность диода. Если диод включен в выпрямительную схему, то влияние емкости приводит к ухудшению процесса выпрямления
Кроме того, эффективность выпрямления снижается за счет того, что часть подведенного к p-n переходу внешнего напряжения падает на сопротивлении базы диода. Отсюда следует, что p-n переходы полупроводниковых диодов, работающих на высокой частоте должны обладать малой емкостью и малым сопротивлением базы.
Для уменьшения емкости уменьшают площадь перехода, а для уменьшения сопротивления базы уменьшают толщину базы.
Требования уменьшения инерционных свойств в.ч. диода и, в связи с этим уменьшения площади перехода, времени жизни неравновесных неосновных носителей заряда и толщины базы становится особенно важным в том случае, если диод работает в импульсной схеме в качестве переключателя. Переключатель имеет два состояния: открытое и закрытое. В идеальном случае переключатель должен иметь нулевое сопротивление в открытом состоянии, бесконечно большое – в закрытом, и мгновенно переходить из одного состояния в другое. В реальном случае при переключении ВЧ диода из закрытого состояния в открытое и обратно стационарное состояние устанавливается в течение некоторого времени, которое называется временем переключения и характеризует инерционные свойства диода. Наличие инерционных свойств при быстром переключении приводит к искажению формы переключаемых импульсов.
При изготовлении импульсных диодов в исходный полупроводник вводятся элементы, являющиеся эффективными центрами рекомбинации (Au , Cu , Ni ), что снижает время жизни неравновесных носителей заряда. Толщина n- области (базы) уменьшается до значений меньших, чем значение диффузионной длины пробега дырок Zр . Это одновременно уменьшает и время жизни неравновесных носителей, и сопротивление базы. Конструктивно в.ч. диоды выполняются в виде точечной конструкции или плоскостной с очень малой площадью перехода.
12. Биполярный транзистор.
Бип. тр-ром (БТ) наз-ся электропреобразовательный полупроводниковый (ПП) прибор, имеющий два взаимодействующих перехода. Тр-р представляет собой кристалл ПП, содержащий 3 области с поочередно меняющимися типами проводимости. В зависимости от порядка чередования областей различ. БТ типов p-n-p и n-p-n . Принцип действия БТ различных тип. одинаков. Тр-ры получили назв. бипол., т.к. их работа обеспеч-ся носителями зарядов двух типов основными и неосновн.
Схематическое устр-во и условн. графич. обознач. p-n-p и n-p-n тр-ров показ. на рис. 1.
рис. 1.
Одну из крайних областей тр-ной структуры создают с повыш. концентрацией примесей, используют в режиме инжекции и наз. эмиттером . Среднюю область наз. базой , а крайнюю обл. – коллектором . Два перехода БТ наз. эмиттерным и коллекторным .
В завис. от того, какой электрод имеет общую точку соедин-я со вх. и вых. цепями, различ. 3 способа включ. тр-ра: с ОБ, ОЭ и ОК. Электрич. парам-ры и хар-ки БТ существенно различ-ся при разных схемах вкл.
По режимам работы p-n перехода различают 4 режима работы тр-ра:
1. Активный режим – эмиттерный переход открыт, коллекторный закрыт. Этот режим работы явл. обычным усилительным, при котором искажения сигнала min.
2. Режим насыщения – оба перехода откр. Падение U на откр. эмит. и колл. переходах напр. встречно, однако I в цепи Э-К проходит в одном напр., напр. от К к Э в тр-ре n-p-n типа (рис. 2.а). Тр-р работает в реж. насыщ. при относит. больших токах базы. Инжекции электронов в Б при этом становится столь сильной, что цепь К становится неспособной извлекать избыточные электроны из Б также эффективно, как в активном режиме. Концентрация электронов в Б у колл. перехода становится сравнимой с концентр. их у эмитт. перехода (рис. 2.b), что соотв-ет прямой полярности U на колл. переходе.
рис. 2.
3. Режим отсечки оба перехода закрыты. Он характ-ся очень малыми I ч/з запертые переходы тр-ра.
4. В инверсном реж. эмитт. переход закр., а колл. откр., т.е. Т вкл. «наоборот»: К работает в качестве Э, Э в качестве К.
Параметры БТ.
В справочниках приводятся основные и предельные параметры тр-ра.
К основным пар. относятся:
1. Емкость колл. перехода Ск ;
2. Коэфф. усиления (передачи) по току h21Э ;
3. Обратный I колл. перехода при включенном эмитт. Iкб 0 ;