Шпаргалка: Геометрия

T. (Признак парал. 2-х плоск.).Если 2 пересек. прямые 1-й a| | двум пересек. прямым другой b, то a| | b.

Т. Если 2 парал. Плоск-ти пересеч. 3-й, то линии пересечения | |.

Т. Через тчку вне плоскости можно провести плоск-ть | | данной и только 1.

Т. Отрезки парал. Прямых, заключенные между 2-мя плоскостями, =.

Т. Признак ^ прямой и пл-сти. Если прямая, перек-ая плос-ть, ^каждой из 2-х перек-ся прямых, то прямая и пл-сть ^.

Т. 2 ^ к пл-сти | |.

Т. Если 1 из 2-х паралл. прямых ^, то и другая ^ плоскости.

Т. Признак ^ 2-х плос-тей. Если пл-сть проходит через ^ к др. п-сти, то он ^ этой л-сти.

Дано [a)^b,[a) Îa,aÈb= (p).Д-ть:a^b

Док-во. [a)^b=·М. Проведем (b) через М, (b)^(p). (a)Ù(b) - линейный Ð двугранного угла между aиb. Так как [a)^b-(a)^(b)- (a)Ù(b)=90°-a^b-

Т. Если 2 пл-сти взаимно ^, то прямая

1-й пл-сти ^ линии пересеч. пл-стей, ^ 2-й пл-сти.

Т. О 3-х ^ .. Для того, чтобы прямая, леж-я в пл-сти,, была ^ наклонной, необх-мо и достаточно, чтобы эта прямая была ^ проекции наклонной.

Многогранники

Призма. V = S осн × a - прямая призма

a - боковое ребро, S пс- S ^-го сечения

V = S пс × а - наклонная призма

V = Sбок. пов-сти призмы + 2Sосн.

Если основание пр. = параллелограмм, то эта призма - параллелепипе д.

V=h Sосн. ;Vпрямоуг.параллел-да = abc

S=2(ab+ac+bc)

Пирамида V= 1/3 * НS осн. S=S всех Ñ.

Фигуры вращения

Цилиндр V=pRІH; S= 2pR (R+H)

Конус V= 1/3 * НS осн= 1/3 * pRІH

S= Sосн+ Sбок= pR (r + L); L-образующая

Сфера “оболочка” S= 4pRІ

Шар М= 4/3 pR3

К-во Просмотров: 265
Бесплатно скачать Шпаргалка: Геометрия