Шпаргалка: Множественная регрессия и корреляция

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции:

Значение индекса множественной корреляции лежит в пределах от 0 до 1 и должно быть больше или равно максимальному парному индексу корреляции:

Индекс множественной корреляции для уравнения в стандартизированном масштабе можно записать в виде

При линейной зависимости коэффициент множественной корреляции можно определить через матрицу парных коэффициентов корреляции:

---- определитель матрицы парных коэффициентов корреляции;

------ определитель матрицы межфакторной корреляции.

Частные коэффициенты (или индексы) корреляции, измеряющие влияние на y фактора при неизменном уровне других факторов, можно определить по формуле:

или по рекуррентной формуле:

.

Частные коэффициенты корреляции изменяются в пределах от –1 до 1.

Качество построенной модели в целом оценивает коэффициент (индекс) детерминации. Коэффициент множественной детерминации рассчитывается как квадрат индекса множественной корреляции:

Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитывается по формуле:

где n-число наблюдений;

m – число факторов.

Значимость уравнения множественной регрессии в целом оценивается с помощью F-критерия Фишера:

Частный F-критерий оценивает статистическую значимость присутствия каждого факторов в уравнении. В общем виде для фактора частный F-критерий определится как

Оценка значимости коэффициентов чистой регрессии с помощью t-критерия Стьюдента сводится к вычислению значения

где - средняя квадратичная ошибка коэффициента регрессии она может быть определена по следующей формуле:

К-во Просмотров: 307
Бесплатно скачать Шпаргалка: Множественная регрессия и корреляция