Шпаргалка: Векторная алгебра
ВЕКТОРНАЯ АЛГЕБРА - раздел векторного исчисления в котором изучаются простейшие операции над (свободными) векторами. К числу операций относятся линейные операции над векторами: операция сложения векторов и умножения вектора на число.
Суммой a + b векторов a иb называют вектор , проведенный из начала a к концу b , если конец a и начало b совмещены. Операция сложения векторов обладает свойствами:
a +b=b+a (коммутативность)
(а+b)*с=а*(b+с) (ассоциативность)
a + 0=a (наличие нулевого элемента )
a+(-a)=0 (наличие противоположного элемента),
где 0 - нулевой вектор, -a есть вектор, противоположный вектору а . Разностью a-b векторов a и b называют вектор x такой, что x+b=a.
Произведением l x вектора а на число l в случае l ¹ 0 , а ¹ О называют вектор, модуль которого равен | l || a | и который направлен в ту же сторону, что и вектор a , еслиl >0, и в противоположную, если l <0 . Если l =0 или (и) a =0, то l a =0 . Операция умножения вектора на число обладает свойствами:
l *( a + b )= l * a + l * b (дистрибутивность относительно сложения векторов)
( l +u)* a = l * a + u * a (дистрибутивность относительно сложения чисел)
l *( u * a )=( l * u )* a (ассоциативность)
1*a=a (умножение на единицу)
Множество всех векторов пространства с введенными в нем операциями сложения и умножения на число образует векторное пространство (линейное пространство).
В Векторной алгебре важное значение имеет понятие линейной зависимости векторов. Векторы а, b , … , с называются линейно зависимыми векторами, если существуют числа a , b ,…, g из которых хотя бы одно отлично от нуля, такие, что справедливо равенство:
a a + b b +… g c =0. (1)
Для линейной зависимости двух векторов необходима и достаточна их коллинеарность, для линейной зависимости трех векторов необходима и достаточна их компланарность. Если один из векторов а, b, ...,c нулевой, то они линейно зависимы. Векторы a,b, ..,с называются линейно независимыми, если из равенства (1) следует, что числа a , b ,…, g равны нулю. На плоскости существует не более двух, а в трехмерном пространстве не более трех линейно независимых векторов.
Совокупность трех (двух) линейно независимых векторов e 1 , e 2 , e 3 трехмерного пространства (плоскости), взятых в определенном порядке, образует базис. Любой вектор а единственным образом представляется в виде суммы:
a = a 1 e 1 + a 2 e 2 + a 3 e 3 .
Числа a 1 , a 2 , a 3 называют координатами (компонентами) вектора а в данном базисе и пишут a={ a 1 , a 2 , a 3 } .
Два вектора a={ a 1 , a 2 , a 3 } и b={ b 1 , b 2 , b 3 } равны тогда и только тогда, когда равны их соответствующие координаты в одном и том же базисе. Необходимым и достаточным условием коллинеарности векторов a={ a 1 , a 2 , a 3 } и b={ b 1 , b 2 , b 3 } ,b¹0, является пропорциональность их соответствующих координат: a 1 = l b 1 , a 2 = l b 2 , a 3 = l b 3 . Необходимым и достаточным условием компланарности трех векторов a={ a 1 , a 2 , a 3 } , b={ b 1 , b 2 , b 3 } и c={ c 1 , c 2 , c 3 } является равенство :
| a 1 a 2 a 3 |
| b 1 b 2 b 3 | = 0
| c 1 c 2 c 3 |
Линейные операции над векторами сводятся к линейным операциям над координатами. Координаты суммы векторов a={ a 1 , a 2 , a 3 } и b={ b 1 , b 2 , b 3 } равны суммам соответствующих координат: a+ b ={a1 +b1 ,a2 +b2 ,a3 +b3 } . Координаты произведения вектора а на число l равны произведениям координат а на l :
l а= { l а1 , l a2 , l a3 }.
Скалярным произведением (а, b) ненулевых векторов а и b называют произведение их модулей на косинус угла j между ними:
(а, b) = | а |*| b | cos j .
За j принимается угол между векторами, не превосходящий p . Если а=0 или b=0 , то скалярное произведение полагают равным нулю. Скалярное произведение обладает свойствами:
(a, b)= (b, а) (коммутативность),
--> ЧИТАТЬ ПОЛНОСТЬЮ <--