Сочинение: Доказательство теоремы Ферма для n=4
Великая теорема Ферма формулируется следующим образом: диофантово уравнение:
Аn + Вn = Сn (1)
где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.
Суть Великой теоремы Ферма не изменится, если уравнение (1) запишем следующим образом:
Аn = Сn - Вn (2)
Пусть показатель степени n=4. Тогда уравнение (2) запишется следующим образом:
А4 = С4 -В4 (3)
Уравнение (3) запишем в следующем виде:
А4 = (С2 ) 2 - (В2) 2 = (С2 -В2 ) ∙ (С2 +В2 ) (4)
Пусть: (С2 -В2 ) = N4 (5)
Уравнение (5) рассматриваем как параметрическое уравнение 4 - ой степени с параметром Nи переменными Bи С. Преобразуем уравнение (5):
N4 = (С -В) · (С +В) (6)
Для доказательства используем метод замены переменных. Обозначим:
C-B=M (7)
Из уравнения (7) имеем:
C=B+M (8)
Из уравнений (6), (7) и (8) имеем:
N4 =M∙ (B+M+B) =M∙ (2B+M) = 2B∙M+M2 (9)
Из уравнения (9) имеем:
N4 - M2 = 2B∙M (10)
Отсюда:
B= (11)
Из уравнений (8) и (11) имеем:
C= (12)
Из уравнений (11) и (12) следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа N4 на число M, т.е. число Mдолжно быть одним из сомножителей, входящих в состав сомножителей числа N4 .
Из уравнений (11) и (12) также следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел Nи M: оба числа должны быть четными или оба нечетными.
Из уравнений (11) и (12) также следует:
С2 +В2 = (13)
Обозначим:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--