Статья: Аксиоматическое построение основных уравнений теории реального электромагнитного поля
В концепции корпускулярно-полевого дуализма электромагнитных характеристик материи сформулированы физико-математические принципы аксиоматического построения уравнений реального электромагнитного поля, физическое содержание которых представляет собой концептуально новый уровень в развитии основ полевой теории классического электромагнетизма.
Известно [1], что в электромагнетизме базовой физической характеристикой материального тела является его электрический заряд, представление о котором на микроуровне имеет принципиальное дополнение: элементарная частица характеризуется не только зарядом q, кратным заряду электрона |e-|, но и спином s, трактуемым как собственный момент количества движения частицы, величина которого квантована значением h/2, где h - постоянная Планка. Таким образом, локальными (корпускулярными) электромагнитными характеристиками микрочастицы являются электрический заряд, определяющий ее электрические свойства и собственный момент, ответственный за ее магнитные свойства, поскольку истинный магнетизм имеет спиновую природу.
С другой стороны, обратим внимание на основополагающую аксиому философии: «пространство и время есть формы существования материи», означающую невозможность в принципе существования материи вне пространства и времени, соответственно, реализации пространства и времени без материи. Иными словами, характеристики материи и пространства-времени едины и взаимно обусловлены. По нашему мнению, аксиома концептуально обосновывает реальность корпускулярно-полевого дуализма материи, который, казалось бы, отличен только лишь по названию от «корпускулярно-волнового дуализма» частиц микромира в квантовой механике. Формально и здесь и там имеем неразрывную взаимосвязь материи с ее пространственно-временным собственным полем. Однако сущностные различия принципиальны: представления корпускулярно-полевого дуализма основаны на объективном единстве частицы материи и ее поля в реальном пространстве физического вакуума, а в концепции корпускулярно-волнового дуализма материальная частица представляется волной вероятности в абсолютно пустом, абстрактном пространстве.
На базе этой логики приходим к выводу, что и электромагнитные характеристики микрообъектов должны обладать «корпускулярно-полевым дуализмом», благодаря которому указанным выше локальным параметрам частицы соответствует некий полевой аналог в виде ее собственного первичного поля. Такой вывод вовсе не так тривиален, как может показаться на первый взгляд, ведь он относится не к известному электромагнитному полю силового взаимодействия зарядов друг с другом на расстоянии, а к иному, далеко не очевидному, первичному полю микрочастицы. Более конкретно пока можно лишь сказать, что если такое поле действительно реально, то оно обязательно должно быть функционально связано с обычным векторным электромагнитным полем. По этой причине полагаем первичное поле также векторным, где электрическая вектор-компонента порождена зарядом микрочастицы q, а магнитная компонента - удельным (на единицу заряда) моментом n(), кратным (n - натуральное число) кванту магнитного потока [1]. А поскольку электрический заряд и спин выявляются опосредовано измерением характеристик электромагнитного поля, то физически логично считать, что и компоненты первичного поля предполагаемых корпускулярно-полевых пар будут также определяться посредством того же электромагнитного поля.
Как видим, наша основная задача - разобраться далее, что должно представлять собой такое поле, каким образом можно аналитически описать его физические свойства и в итоге аксиоматически построить уравнения функциональной взаимосвязи компонент этого гипотетического поля и с реально наблюдаемыми в настоящее время компонентами электромагнитного поля в виде электрической и магнитной напряженностей.
Можно попытаться уже сейчас поставить вопрос, каким должно быть обсуждаемое первичное поле. Например, известен физически интересный факт, что в волновое уравнение квантовой механики (уравнение Шрёдингера) входит поле векторного магнитного потенциала, которое в принципе не может быть заменено полем вектора магнитной индукции. Вполне возможно, что именно электрическая и магнитная компоненты поля векторного потенциала и есть первичные полевые характеристики микрочастицы, полевой эквивалент ее локальных параметров. Однако сегодня о физических свойствах электромагнитного векторного потенциала известно сравнительно мало, да и вообще пока не ясно, соответствует ли данное предположение действительности. Все это и многое другое мы должны выяснить в процессе проводимых исследований.
Итак, продолжим наши рассуждения. Поскольку компоненты обсуждаемого гипотетического первичного поля есть векторные функции пространственно-временных переменных, то описывающие их поведение дифференциальные уравнения наиболее просто можно получить действием на и пространственной производной первого порядка (оператор «набла») со свойствами вектора и скалярной частной временной производной . При этом естественно возникает принципиальный вопрос о допустимости именно таких математических действий с точки зрения физического содержания получаемых результатов, их адекватности рассматриваемой проблеме.
В сложившейся ситуации воспользуемся чрезвычайно важным замечанием классика электродинамики Дж.К. Максвелла, который настоятельно призывал [2] ответственно относиться к математическим операциям над векторами электромагнитного поля и их физической трактовке. Вот его слова ([2] п. 12): “В науке об электричестве электродвижущая и магнитная напряженности принадлежат к величинам первого класса – они определены относительно линии. ... Напротив, электрическая и магнитная индукция, а также электрические токи принадлежат к величинам второго класса – они определены относительно площади”. Как видим, тут конкретно говорится о принципиальных различиях электромагнитных векторов: напряженностей и – линейных (циркуляционных) векторов, соответственно, электрической и магнитной индукций, плотности электрического тока – потоковых векторов. Здесь материальные параметры среды: - электрическая и - магнитная абсолютные проницаемости, - удельная электропроводность.
В развитие сказанного далее Максвелл обсуждает корректные математические действия над функциями полей указанных векторов с точки зрения физики ([2] п. 14): “В случае напряженности следует брать интеграл вдоль линии от произведения элемента длины этой линии на составляющую напряженности вдоль этого элемента. … В случае потоков следует брать интеграл по поверхности от потока через каждый ее элементов”. Тогда в рамках таких условий при переходе к дифференциальной форме записи этих математических действий операция «ротора» (см. теорему Стокса) допустима только для полевых функций линейных векторов: и , а взятие «дивергенции» (см. теорему Гаусса-Остроградского) возможно лишь от функций поля потоковых векторов: , и .
К сожалению, призывы Максвелла к учету физико-математических различий функций векторов электромагнитного поля обычно игнорируют, когда даже в учебной литературе формально пишут физически бессмысленные выражения и , создавая путаницу понятий в умах читателей, превращая в абсурд процесс познания, а обучение - в бестолковое занятие. Как показывает практика научной работы и преподавание все это следствие завидной живучести в умах самих «просветителей» (часто на подсознательном уровне) инородной электродинамике гауссовой системы единиц с ее безразмерными коэффициентами и , где векторы и , и – тождественны. В итоге выхолащивается физическое содержание в соотношениях электромагнетизма и выпячивается на передний план формализм математики. Возможно, этот математический нигилизм и есть одна из причин концептуального застоя в классической электродинамике, которая после Максвелла как наука уже не развивалась, несмотря на серьезную методическую модернизацию исходных максвелловских уравнений и грандиозные успехи внедрения достижений электромагнетизма во многих областях жизни человеческого общества.
Странно, но сложившееся положение дел считается нормальным. Более того, повсеместно с помпой утверждается, что «данная область знания наиболее полно разработана во всех ее аспектах, и настоящий ее уровень является вершиной человеческого гения». Однако надо думать, что эти громкие заявления, конечно, не относятся собственно к самой электромагнитной теории, а касаются только математического уровня ее описания. Ведь математика - всего лишь язык физики. Правда, полезная глобальная математизация современных методов научных исследований порождает иллюзию, что именно уровень развития математики определяет сегодня прогресс наших знаний о Природе. Надо обладать немалым мужеством и веской аргументацией, чтобы в стремлении конструктивно изменить такую, казалось бы, тупиковую ситуацию во всеуслышание утверждать: физические представления классического электромагнетизма – это концептуально недостаточно исследованная область естествознания.
Итак, рассмотрим действие оператора «набла» и частной временной производной на векторные функции обсуждаемого здесь гипотетического первичного поля. Так как для потоковых векторов, следуя здравой логике Максвелла, операция «ротора» недопустима, то функции и считаем полями линейных векторов. В этом случае мы получим два (из трех возможных) варианта записи действия указанных операторов на представленные функции: и , и . А преобразование линейных векторов и в потоковые и , аналогичные известным потоковым векторам и , описывающим отклик пространства среды на воздействие этих полей, позволяет записать другой, скалярный результат действия оператора «набла»: и .
Эти выражения используем далее для физико-математического построения соотношений функциональной связи компонент гипотетического первичного поля и с компонентами электромагнитного поля в виде электрической и магнитной напряженностей. Поскольку взятие ротора функции поля линейного вектора дает функцию потокового вектора, то, дабы удовлетворить априорным требованиям взаимосвязи указанных полей, физически логично считать, что циркуляция векторов и первичного поля обусловлена явлением электрической и магнитной поляризации среды:
(a) , (b) . (1)
Здесь учтено, что компонента первичного поля микрочастицы есть полевой эквивалент ее электрического заряда, создающего электрическое поле, а компонента порождается спином частицы, ответственным за магнитное поле.
В соотношениях (1) ротор функций не равен нулю, что говорит о том, что компоненты первичного поля и являются вихревыми. По этой причине дивергентные уравнения для указанных полевых компонент запишем в виде соотношений кулоновской калибровки, определяющих математически чисто вихревой характер таких полей:
(a) , (b) . (2)
Поскольку действие скалярного оператора частной временной производной на векторную функцию не меняет ее геометрические свойства, то получаемые при этом новые векторы и останутся линейными (циркуляционными) векторами. А потому функциональная связь полей или возможна только с компонентами электромагнитного поля линейных векторов и напряженностей, причем для однозначного выбора пар этих компонент надо учесть, что равенство векторов возможно только при их коллинеарности. В качестве существенного уточнения заметим, что, согласно соотношениям (1), векторы в парах и , соответственно, и взаимно ортогональны. Таким образом, с необходимостью приходим к соотношениям и , которые, однако, нельзя считать окончательными. Ведь в наших рассуждениях никак не отражена принципиально важная характеристика материальной среды – ее электрическая проводимость , которой в той или иной мере обладают все реальные среды. А это должно определенно повлиять на окончательный вид данных выражений.
Как известно [1], процесс электропроводности в хорошем приближении описывается законом Ома , где электрическое поле в проводнике с током потенциально: , то есть не может быть вихревым. Следовательно, полученное ранее соотношение является окончательным. Однако вихревое магнитное поле электрического тока существует. Это следует из закона сохранения заряда , когда подстановки в него выражений закона Ома , теоремы Гаусса и соотношения (1а) дают , где - объемная плотность стороннего заряда, а - постоянная времени релаксации заряда в среде за счет ее электропроводности. В итоге искомые соотношения для вихревых и полей запишутся окончательно в виде
(a) , (b) . (3)
Таким образом, собирая полученные в наших физико-математических рассуждениях соотношения (1) - (3) вместе, приходим к системе дифференциальных уравнений функциональной взаимосвязи компонент нашего гипотетического поля и с реально наблюдаемыми в настоящее время компонентами электромагнитного поля в виде электрической и магнитной напряженностей:
(a) , (b) , (c) ,
(d) , (e) , (g) . (4)
Как видим, данная система уравнений (4) описывает свойства необычного с точки зрения традиционных представлений вихревого векторного электродинамического поля, состоящего их четырех неразрывно связанных векторных компонент , , и , которое условно можно назвать реальное электромагнитное поле.
Убедимся теперь, что свойства функций компонент полей в нашей системе уравнений действительно отвечают концепции корпускулярно-полевого дуализма электромагнитных характеристик материи, благодаря которому конкретному локальному параметру частицы соответствует свой полевой аналог в виде собственного первичного поля. Вначале рассмотрим электрическую компоненту первичного поля, причем для большей наглядности и математической общности представим соотношение (4а) в интегральной форме:
. (5)
Эти интегральные соотношения устанавливают физически содержательное положение о том, что величина циркуляции вектора по произвольному замкнутому контуру С определяется электрическим потоком через поверхность , опирающуюся на этот контур, то есть поляризационным электрическим зарядом, индуцированным на указанной поверхности. Отсюда, в частности, следует определение поля вектора электрического смещения , по величине равного поверхностной плотности поляризационного заряда на пробной площадке, ориентация которой в данной точке создает на ней максимальное значение этого заряда, а нормаль к площадке указывает направление вектора . Определение как потокового вектора показывает его принципиальное отличие от линейного (циркуляционного) вектора напряженности , являющегося силовой характеристикой электрического поля.
Таким образом, согласно соотношению (5), электрическому заряду отвечает его полевой эквивалент - электрическая векторная компонента первичного поля, размерность которого есть линейная плотность электрического заряда. Итак, действительно имеем реализацию первой фундаментальной корпускулярно-полевой пары с единицами измерения в системе СИ .
Корпускулярно-полевые представления подтверждаются связью напряженности магнитного поля и электрической компоненты первичного поля посредством соотношения (4с), имеющего в системе СИ единицу измерения , а ведь это, как и должно быть, полевой эквивалент полного электрического тока (токов проводимости и смещения), величина (сила тока) которого имеет единицу измерения Ампер. Как видим, соотношение (4с) для вихревых полей и представляет собой полевую составляющую корпускулярно-полевой пары , являющуюся очевидным прямым физическим следствием первой фундаментальной пары.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--