Статья: «Безвихревая электродинамика». Математическая модель

.







Возвращаясь к равенству (1) отметим, что его правая сторона совпадает с

уравнением из таблицы1. Частичную инвариантность этого скалярного уравнения только по отношению к пространственным поворотам следует понимать в том смысле, что оно «извлечено изнутри» полностью инвариантного максвелловского.

Плоская поперечно-векторная ЭМВ занимает в 4-мерном пространстве-времени две взаимно ортогональные пространственные координаты. Свободными для полевых компонент общей ЭМВ остаются одна пространственная (продольная) и временная (скалярная) координаты, которые они и занимают сохранившимися скалярными модулями, и новыми продольными векторами.

Наглядным образом скалярных компонент уравнений безвихревой электродинамики являются соответствующие векторные диаграммы нуль-векторов. Знак скаляра предлага-

ется положительным для расходящихся противонаправленных векторов, отрицательным – для сходящихся.

Сопоставление 3-мерных компонент основополагающих уравнений двух электродинамикчески представлены в таблице 2.

Таблица 2

Компоненты уравнений безвихревой электродинамики Компоненты уравнений вихревой электродинамики

Электромеханическая связь. Для вывода электромеханической связи образуем две пары 3 – мерных уравнений

, (30)

(31)

и

, (32)

. (33)

Просуммируем их попарно, предварительно умножив каждое соответственно на ,

. (34)

, (35)

Используя формулу векторного анализа

, (36)

в итоге получим

К-во Просмотров: 256
Бесплатно скачать Статья: «Безвихревая электродинамика». Математическая модель