Статья: Бураковско-Аганозёрский расслоенный массив Заонежья
В результате исследования краевой группы Бураковско-Аганозёрского плутона выделено два типа разрезов. Первый интерпретируется как разрезы придонных частей краевой группы, второй соответствует её боковым фациям. Установлено, что на момент внедрения интрателлурические вкрапленники были представлены оливином состава Fo87 . На основе численного моделирования равновесной кристаллизации составов пород краевой группы по программе COMAGMAT-3.0 получена оценка температуры несколько более 1300о С и состава родоначального расплава по петрогенным, второстепенным и редкоземельным элементам. Установлена близость химизма родоначального расплава интрузива вулканитам свиты Ветреного пояса, что является дополнительным аргументом в пользу гипотезы об их комагматичности.
Введение
Проблеме общего геологического строения и геохимической структуре плутона была посвящена первая публикация [1]. Установлено, что обобщенный разрез расслоенной серии массива характеризуется последовательной сменой четырех зон, представленных оливиновыми, двупироксеновыми, двупироксен-плагиоклазовыми и магнетит-двупироксен-плагиоклазовыми кумулатами. Исследование строения плутона затруднено сложным геологическим строением комплекса, который тектоническими разломами разбит на три блока: Бураковский (юго-западный), Шалозёрский (центральный) и Аганозёрский (северо-восточный). Из-за значительной амплитуды тектонических сдвигов блоки характеризуются разной степенью эродированности. Продемонстрировано, что в зависимости от положения в пространстве магматической камеры (центральные или периферические части) одновременно формируются породы с разной пористостью кумулятивного каркаса. Очевидно, что "синхронные" (кристаллизующиеся из одного и того же расплава) породы разных блоков, в силу вариаций разных пропорций кумулус-интеркумулус, могут создавать иллюзию принадлежности к разным этапам эволюции одной магмы, или даже к различным магмам. Это делает некорректным прямое сопоставление петро-, геохимических характеристик пород Аганозёрской и Бураковско-Шалозёрской частей массива. Нам представляется, что в этой ситуации актуальными становятся работы направленные на реконструкцию состава магматического расплава. При этом важнейшее значение приобретают особенности минерального и химического состава пород приконтактовой группы, наиболее примитивные породы которой можно использовать при моделировании первичных фазовых равновесий, характеризующих температуры и составы родоначальных магм [2].
В данной статье мы представляем результаты термодинамических расчетов для приконтактовых пород массива, указывающие на незначительные отличия температур внедрения и составов магматических расплавов, поступавших в различные части общей интрузивной камеры. Полученные оценки имеют важное значение при исследовании процессов внутрикамерного становления интрузива и могут оказаться полезны при реконструкции его геодинамического положения, а также доказательствах комагматичности с вулканическими и плутоническими образованиями региона.
Постановка проблемы
Оценка состава родоначальной магмы плутона может быть получена несколькими способами. Первый состоит в том, что за состав родоначальной магмы принимается состав закалённых пород эндоконтактовой фации интрузива. При реализации второго подхода оценка состава родоначальной магмы проводится по средневзвешенному составу пород интрузива или его расслоенной серии. Третий способ, который получил название метода геохимической термометрии [3], позволяет получить оценку температуры и состава жидкой части исходной магмы по результатам ЭВМ-моделирования равновесной кристаллизации расплавов, представляющих наименее фракционированные (примитивные) породы краевых серий [4].
В силу чрезвычайно слабой обнажённости массива задача поиска апофизов интрузивного тела или сингенетичных даек, отвечающих стадии внедрения исходной магмы, представляется трудноразрешимой. Оценка среднего состава плутона может быть произведена двумя путями. Первый включает определение средних составов разных типов пород с последующим расчетом средневзвешенного в соответствии с их распространённостью [5]. Реалистичность подобных оценок сильно зависит от принятой модели геологического строения интрузива. Другой подход основан на расчете средневзвешенных содержаний элементов по сводному вертикальному разрезу интрузива. Эта методика, использованная в работах [6, 7, 8], базируется на предположении, что соотношения пород в одномерном обобщенном разрезе, адекватно отражают пропорции их объёмов в целом по интрузиву. Такой подход показал свою эффективность для относительно небольших пластовых тел, таких как сибирские интрузивы трапповой формации [9], и пологих лопполитов типа интрузива Киглапейт на Лабрадоре [10]. Однако для крупных плутонов сложной геометрической формы встает вопрос о соответствии реальных объемов пород и их соотношений в частных разрезах, что требует независимой проверки. Кроме того, серьёзным ограничением этой методики является условие доступности полного разреза расслоенной серии, представляющего всю совокупность дифференциатов исходной магмы.
В данном исследовании мы пошли по пути реализации метода геохимической термометрии. Этот метод включает проведение термодинамических расчетов для реальных образцов пород из конкретных приконтактовых слоёв, т.е. не связан с ограничениями, которые может накладывать сложное пространственное строение массива. Это позволяет использовать результаты термометрии не только для оценки характеристик исходной магмы, но также сопоставлять их с другими подходами, используя в качестве критерия реалистичности существующих моделей геологического строения Бураковско-Аганозёрского интрузива. Как будет показано, для термометрических исследований наиболее благоприятны породы базальных частей краевой группы, которые в отличие от адкумулатов центральных частей интрузива в наименьшей степени подверглись субсолидусному переуравновешиванию, хотя и представляют кумулаты повышенной пористости, содержащие значительное количество интеркумулятивного расплава.
Строение краевой группы плутона
Рис.1 |
Породы краевой группы интрузива рассматриваются по данным восьми скважин, пробуренных на Аганозёрском блоке и девяти на Шалозёрском (Рис. 1). Методика идентификации и исследования краевых пород основывается на анализе геохимической структуры их разрезов и детально описана в предыдущей публикации [1]. В соответствии с этим подходом геохимическое поле плутона охарактеризовано набором индикаторных отношений элементов-примесей, которые контрастно распределяются в главные породообразующие минералы - Ni/(V+Ni), V/(Ga+V) и Sc/(Ga+Sc). Это позволяет каждой пробе дать фазовую интерпретацию. Преимущественно оливиновые породы сопровождаются максимумами Ni/(V+Ni) и минимумами отношений V/(Ga+V) и Sc/(Ga+Sc). Породы с преобладанием пироксенов имеют максимум показателей V/(Ga+V) и Sc/(Ga+Sc), но минимум отношения Ni/(V+Ni). В свою очередь для габброидов характерны минимумы всех индикаторных отношений. Отличить породы краевой группы от пород расслоенной серии можно по поведению дополнительных показателей. В разрезах пород краевой группы наблюдается "обратный" тренд индикаторов магматической эволюции, который выражается в уменьшении вверх по разрезу показателя валовой железистости (f') и увеличении анортитового отношения (an') (Анортовое отношение расчитывалось по формуле an' = (Al-Na)/(Al+Na))на фоне понижения отношения Co/(Ni+Co). При переходе к расслоенной серии тренды этих величин приобретают "нормальную" направленность, характерную для кристаллизационного фракционирования магматического расплава.
Краевая группа Аганозёрского блока. Оливиновые породы блока (Рис. 1) до глубины 900 м практически нацело серпентинизированы, вплоть до исчезновения реликтов первично-магматической структуры [11, 12]. Однако этот процесс не изменил геохимические закономерности, наблюдавшиеся в неизменённых породах [1]. Это позволяет применять упомянутую геохимическую методику и к серпентинизированным породам.
Геохимическая структура краевой группы блока отчетливо представлена в керне скважины 177 (Рис. 2А), которая, несмотря на практически полную серпентинизацию оливина, может рассматриваться как эталонная для всего блока. Переход от вмещающих мезократовых амфиболитов к породам интрузива сопровождается здесь резкой сменой характера графиков, отражающих вариации выбранных геохимических параметров. По мере удаления от контакта в разрезе краевой группы наблюдается последовательная смена габброидов, пироксенитов и пойкилитовых перидотитов, сложенных преимущественно оливином. Характерно, что значение показателя Ni/(V+Ni), отражающего соотношение Ol и Px, в оливинсодержащих породах, монотонно возрастает. Это коррелирует с понижением нормативного содержания пироксеновых компонентов, которое вероятно обусловлено уменьшением пористости кумулуса (количества интерстициальной жидкости) в направлении от контакта интрузива.
Рис.2 |
Уменьшение отношения Co/(Ni+Co) вверх по разрезу также подтверждает предположение об увеличении доли кумулятивного интрателлурического Ol относительно примокристов, образовавшихся in situ при кристаллизации межзернового расплава. Поскольку в керне скв. 177 наблюдается только монотонное понижение значений Co/(Ni+Co) без признаков изменения тренда этого показателя, то имеющуюся последовательность пород следует рассматривать как неполный разрез краевой зоны, видимой мощностью 90 м.
Особый петрологический интерес представляет скв. 20, глубиной более 1680 м. Это единственная горная выработка, вскрывающая практически неизменённые оливиновые кумулаты из нижних горизонтов расслоенной серии и пород краевой группы. Они представлены пойкилитовыми перидотитами и пойкилитовыми верлитами, которые в направлении от контакта переходят в дуниты (см. интервал глубин 1542-1636 м на Рис. 2Б). Эта направленность осложняется присутствием подстилающего и перекрывающего горизонтов габбро-диабазов, геохимические характеристики которых резко отличны от соответствующих показателей остальных пород Аганозёрского блока (Рис. 2Б). Это не позволяет рассматривать габбро-диабазы из скв. 20 как породы сингенетичные ранним стадиям затвердевания интрузива. Можно предполагать, что к контакту массива здесь приурочена более поздняя интрузия габброидов, нарушающая полный разрез пород краевой группы и не дающая возможности в керне скважины проследить их непосредственный переход во вмещающие породы. Тем не менее, несмотря на фрагментарную сохранность последовательности приконтактовых пород интрузива, закономерное изменение индикаторных геохимических показателей (аналогично тому, которое наблюдается в скв. 177) даёт основания уверенно отнести около 100 м керна из скв. 20 к краевой группе пород массива.
Рис.3 |
Составы породообразующих минералов краевой группы блока исследованы фрагментарно и несистематично [5, 13, 14]. В разрезе скв. 20 по мере удаления от контакта магнезиальность Ol возрастает примерно от Fo85 до Fo87 (Рис. 3). Наиболее железистый оливин краевых пород (Fo84) установлен в обр. 196/20 (здесь и далее числительномера образца соответсвует номеру скважины, а знаменатель - интервалу керна). Аналогичная закономерность наблюдается в скв. 196 для клинопироксена: показатель магнезиальности возрастает от #mg67 в приподошвенных габбро-норитах (обр. 196/119, 196/83.5) до #mg85 в перекрывающих пойкилитовых перидотитах (обр. 196/20). Состав плагиоклаза (An40) измерен в единственном образце 196/83.5. Широкие вариации состава Cpx и кислый состав Pl могут указывать, что часть этих анализов представляют интеркумулятивный материал, кристаллизовавшийся in situ из межзерновой жидкости.
Краевая группа Шалозёрского блока разбурена на северной, южной и восточной окраинах блока (Рис. 1). В кернах скважин можно выделить два типа разреза. Первый тип, вскрыт на восточной окраине блока (скв. 28, 28а, 84, 85) и аналогичен разрезу краевой зоны Аганозёрской части массива. Второй тип представлен в кернах скважин, пробуренных на севере и юге блока (скв. 67, 93, 94, 184, 187).
Рис.4 |
Геохимическая структура разреза краевой группы II типа характеризуется сложным, но выдержанным от скважины к скважине строением, которое нагляднее всего проявлено в керне скв. 187 (Рис. 4). Расслоенная серия, слагающая верхние 125 м керна и перекрывающая породы краевой группы, имеет здесь легко узнаваемую геохимическую структуру. Она отражает последовательную смену оливиновых, двупироксеновых и двупироксен-плагиоклазовых кумулатов [1].
Разрез краевой группы имеет видимую мощность около 60 м и по мере удаления от нижнего контакта плутона характеризуется последовательным переходом от обогащенных оливином пород (пойкилитовых перидотитов) к пироксенитам и габброидам. Однако в верхней части этого разреза габброиды вновь сменяются пачкой пироксенитов, что дает картину распределения пород, напоминающую зеркальное отображение расслоенной серии. Характерно, что этой симметрии подчиняются тренды отношения Co/(Ni+Co) и показателя валовой железистости f'. В разрезе краевой группы в направлении от контакта плутона наблюдается уменьшение величины этих показателей, тогда как вверх по разрезу расслоенной серии - их увеличение. С этим хорошо согласуется изменение анортитового отношения an': в разрезе краевой зоны этот показатель растет, в расслоенной серии понижается.
Рис.5 |
Скважина 67 - вторая глубокая скважина, пробуренная на теле массива; её глубина составляет около 1250 м (Рис. 5). Это самая загадочная скважина плутона, поскольку последовательность вскрытых ею пород до сих пор не имеет общепринятой интерпретации. Ранее она трактовалась как сдвоенный разрез, позднее - как разрез с увеличенными мощностями [15]. Под влиянием идеи, что Бураковско-Аганозёрский массив представляет комплекс двух интрузивных тел [16, 17], для объяснения строения скв. 67 предлагались гипотезы дополнительных интрузивных фаз. Так М.И. Богиной с соавторами [18] было выдвинуто предположение, что нижние 350 м керна представляют разрез некой первой фазы интрузии, породы которой существуют вблизи гипотетического подводящего канала Шалозёрско-Бураковского тела. В дальнейшем последовательность пород, вскрытая скважиной, интерпретировалась как разрез расслоенной серии, осложнённый более поздней интрузивной фазой [14]. Предполагалось, что к дополнительному внедрению принадлежат перидотитовые породы, вскрытые скважиной на интервале 650-850 м.
Действительно, разрез скважины можно разделить на два ритма - нижний и верхний. Верхний ритм вскрывается первыми 850 метрами керна, причем его геохимическая структура ритма в деталях повторяет структуру характерную для пород Шалозёрского блока [1]. Снизу вверх наблюдается последовательная смена оливиновых, двупироксеновых и двупироксен-плагиоклазовых кумулатов, а зона двупироксеновых кумулатов осложнена перидотитовым прослоем (интрвал керна 567 589 м.). В разрезе нижнего ритма (850 1180 м) также наблюдается последовательная смена преимущественно оливиновых, двупироксеновых и двупироксен-плагиоклазовых пород, но в отличии от разреза верхнего ритма он характеризуется совершенно другим мотивом геохимической структуры. Для этой толщи характеры повышенные содержания когерентных элементов (Ni, Cr, V) и "относительно некогерентного" титана при пониженных концентрациях Sc. Это находит отражение в увеличении показателей Ni/(V+Ni) и V/(Ga+V) на фоне снижения Sc/(Ga+Sc). Указанные геохимические различия верхнего и нижнего ритмов позволяют высказать сомнения в реалистичности предположений о механическом сдвоении одного и того же разреза в керне этой скважины, которое могло произойти за счет тектонических сдвигов.
Показательно поведение трендов изменения параметров f', an' и Co/(Ni+Co) в разрезах обоих ритмов. Если не рассматривать породы дополнительного внедрения (перидотитовый прослой), осложняющего зону двупироксеновых кумулатов, то для верхнего ритма характерны монотонные тренды "нормальной" магматической эволюции. Напротив, разрез нижнего ритма отличается сложной картиной поведения индикаторных отношений: например, график изменения показателя валовой железистости f' отчётливо делится здесь на три части (Рис. 5). Преимущественно оливиновые породы характеризуются обратным трендом изменения f'=0.21 0.13. Для обогащенных пироксеном пород вверх по разрезу отмечаются положительные приращения этого показателя (f'=0.22 0.45), а в габброидной части ритма они вновь становятся отрицательными (f'=0.45 0.17). Вариации an' и отношения Co/(Ni+Co) характеризуются графиками, которые можно разделить на две части: нижняя обогащённая оливином часть ритма снизу вверх имеет "нормальный" наклон, а верхняя (пироксениты и габброиды) - "обратный". Очевидно, что подобное распределение элементов, составляющих рассмотренные отношения, не могут быть объяснены в рамках обычной фракционной кристаллизации магматического расплава. Это позволяет отклонить гипотезы, как ранней [18], так и более поздней [14], интрузивных фаз плутона.
Последовательность элементов геохимической структуры нижнего ритма (Рис. 5) хорошо коррелирует с аналогичной последовательностью для скв. 187 (рис. 4), что позволяет интерпретировать породы нижнего ритма как разрез краевой группы интрузива. Отличительной особенностью рассмотренных разрезов является разная относительная мощность двупироксен-плагиоклазовых пачек, связанная, возможно, с разной высотой разрезов, относительно дна магматической камеры. Столь значительная мощность ритма (340 м), вступающая в противоречие с такой интерпретацией, может быть легко объяснена маленьким углом наклона ствола скважины относительно расслоенности. Это предположение хорошо согласуется с общим наклоном блока в северо-западных румбах, и как следствие, увеличение угла падения расслоенности в южной части Шалозёрского блока. В этом случае наблюдаемая мощность ритма будет являться кажущейся, а скв. 67 представляет уникальный случай столь детального опробования относительно маломощной пачки пород.
Составы породообразующих минералов краевой группы Шалозёрского блока получены М.М. Лавровым и А.В. Чистяковым в кернах скважин 28А [13] и 67 [5, 15, 14].
В разрезе первого типа, вскрытом скважиной 28А, сохраняется закономерность, установленная для краевой группы Аганозёрского блока: магнезиальность темноцветных минералов возрастает по мере удаления от контакта. Так для низкокальциевого пироксена наблюдается увеличение mg# от 66 в габброидах (обр.28А/199.7) до mg#=83 в пойкилитовых перидотиах (обр.28А/175). Вариации состава Pl демонстрируют обратную тенденцию: в габброидах - An48, в пироксенитах (обр.28А/195) и перидотитах - An35 и An38, соответственно. Состав Ol (Fo81) установлен в обр.28А/175.
Вариации составов минералов для разреза второго типа охарактеризованы в керне из скв. 67. Здесь обращают внимание различия показателя магнезиальности в пределах одного шлифа, которые для высоко-Са пироксена могут достигать 4-6 номеров (обр.67/1039, 67/900), а для низко-Са пироксена - 24 (обр.67/991) [14]. При ограниченном объёме имеющихся аналитических данных попытка установить характер скрытой расслоенности разреза имеет мало шансов на успех. Однако, для целей нашего исследования важны самые "высокотемпературные" составы. Отметим, что наиболее магнезиальный Ol соответствует составу Fo87 (обр.67/1161, 67/1110.2), а наиболее тугоплавкие низко- и высококальциевые пироксены (обр.67/1110.2) имеют магнезиальность #mg87 и #mg88, соответственно.
Таким образом, в пределах массива установлено два типа разреза, принадлежащих к краевой группе плутона. Первый тип выявлен в пределах Аганозёрского блока и в наиболее эродированной части Шалозёрского. Второй тип разреза вскрыт в тех частях Шалозёрского блока, где степень эрозии значительно меньше. Поэтому, породы разреза первого типа следует интерпретировать как разрезы придонных частей краевой группы, тогда как разрезы второго типа, по-видимому, надо трактовать как породы её боковой фации.
Состав оливина интрателлурических вкрапленников
Важнейшим петрологическим параметром, накладывающим ограничения на физико-химические характеристики родоначальной магмы, является состав интрателлурических вкрапленников. Около половины объёма плутона составляют оливиновые кумулаты и адкумулаты, поэтому фазовый состав внедрившейся магмы устанавливается однозначно: родоначальный расплав и интрателлурические кристаллы Ol. Это утверждение верно, как в случае внедрения магмы в субликвидусном состоянии (высокомагнезиальный расплав и незначительное количество кристаллов Ol), так и в случае высокой степени "раскристаллизации" исходной смеси. Для оценки состава этих первичных кристаллов рассмотрим данные по вариациям магнезиальности Ol в разрезе зоны оливиновых кумулатов.
На Аганозёрском блоке непосредственно измерить состав оливина удается только в нижней несерпентинизированной части разреза (скв. 20). Данные, полученные предшественниками [5, 14], дополнены результатами собственных микрозондовых исследований и представлены на Рис 3. На протяжении 700 м керна наблюдается увеличение магнезиальности Ol вверх по разрезу от Fo85 вблизи контакта до Fo90 в близи фронта серпентинизации. Аналитические данные М.М. Лаврова показывают, что той же закономерности подчиняется распределение Ni и Cr: их содержания в Ol возрастают по мере удаления от контакта плутона.
Представление о вариациях состава Ol в серпентинизированной части разреза дают также результаты изучения составов акцессорного хромита. Этот минерал обладает высокой устойчивостью в процессах серпентинизации силикатов. В частности, хромиты Бураковско-Аганозёрского плутона не имеют магнетитовых "рубашек", что характерно для более высокотемпературных вторичных изменений [19]. Известно, что для шпинелидов характерен быстрый диффузионный обмен ионами Fe2+ и Mg2+ с сосуществующими фемическими минералами. Это обусловлено тем, что коэффициенты диффузии двухвалентных катионов в шпинелиде примерно в 1.5 раза выше, чем в оливине [20]. Таким образом, можно предположить, что магнезиальность реально наблюдаемого хромита должна коррелировать с изменением состава Ol, который на 95-98% слагает исследуемые адкумулаты. Эти вариации приведены на Рис 3. Как и следовало ожидать, в неметаморфизованной части разреза состав хромита изменяется параллельно составу Ol. Далее вверх по разрезу магнезиальность минералов понижается до значений, характерных для приконтактовых пород. Таким образом, зона оливиновых кумулатов Аганозёрского блока до серпентинизации характеризовалась максимумом показателя валовой магнезиальности, расположенного вблизи середины её разреза.
Очевидно, что наблюдаемое распределение элементов в оливиновых адкумулатах не может быть описано ни последовательным фракционированием магматического расплава, ни осаждением интрателлурических кристаллов оливина. Мы полагаем, что на Аганозёрском блоке валовый состав пород зоны изменился в процессе адкумулятивного дорастания кристаллов преципитата, а составы слагающего их оливина не отвечает ликвидусным. Таким образом, наиболее надёжной оценкой состава интрателлуричеких вкрапленников следут признать наиболее магнезиальные составы, установленные в краевой группе пород, которые для обоих блоков плутона отвечают Fo87.
Геохимическая термометрия пород краевой группы
Метод геохимической термометрии объединяет несколько подходов к решению обратных петрологических задач, направленных на оценку температуры и состава магматических расплавов, из которых кристаллизовались базиты и гипербазиты [9]. В основе метода лежит предположение о равновесном распределении компонентов между первичными кристаллами и жидкостью, а его практическая реализация связана с проведением расчётов по ЭВМ-моделированию равновесной кристаллизации расплавов конкретных пород. В случае интрузивных массивов образцы для вычислений выбираются на основе геологических данных по принципу приуроченности к одним и тем же горизонтам или близости расположения в вертикальных разрезах. Это дает основание предполагать общую температуру и состав интеркумулусного расплава.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--