Статья: Бураковско-Аганозёрский расслоенный массив Заонежья

Реализация геохимической термометрии проводится с помощью ЭВМ-модели COMAGMAT-3.0 [21; 4]. Ранее этот подход использовался при реконструкции температурно-композиционных и фазовых характеристик исходных магм для ряда интрузивов, включающих небольшие (мощностью 100-200 м) слабо дифференцированные силлы Сибирской платформы и Восточной Камчатки [9; 22; 2], контрастно расслоенные массивы Партридж Ривер и Талнах [23, 24, 25], а также крупные плутоны Скергаард, Киглапейт и Довырен [4, 26; 10; 27].

Успех применения геохимической термометрии к этим объектам связан с котектической природой исходных магм, которые во всех случаях представляли смеси кристаллов оливина, плагиоклаза и жидкости. Это наиболее благоприятная ситуация, когда расчетные траектории эволюции остаточного расплава образуют ярко выраженную область пересечения, что дает возможность надежной аппроксимации содержаний главных компонентов в исходном расплаве - с погрешностью ~ 0.5-1 мас.%. Неопределенности оценки температуры магмы составляют при этом 10-15о С, приближаясь к точности используемых геотермометров [2]. Менее надежны оценки, полученные в поле совместной кристаллизации Ol, Pl и пироксенов, поскольку в этом случае незначительное понижение температуры системы могут приводить к сильному повышению степени кристаллизации системы. Очевидно, что слабая зависимость состава расплава от температуры для эвтектоидных систем снижает разрешающую способность метода.

Третий вариант (к которому относятся попытки реконструкции исходной магмы Бураковско-Аганозёрского плутона) является наименее благоприятным для применения геохимической термометрии. Выше отмечалось, что смесь интрателлурических вкрапленников и исходной жидкости находилась в поле кристаллизации одного силикатного минерала - оливина. Топология линий эволюции состава расплава в поле избыточного компонента такова, что при практических расчетах (в силу аналитических и вычислительных неопределенностей) модельные траектории образуют не пересечение, а систему субпараллельных линий, которые накладываются друг на друга, образуя "полосообразный" тренд эволюции в координатах температура - состав (см. ниже Рис. 9). Это осложняет интерпретацию результатов моделирования, требуя привлечения дополнительной и независимой от расчетов информации о составе первичных кристаллов Ol (см. выше), которые используются для конкретизации температуры внедрения исходной магмы.

Условия проведения вычислений. При проведении термодинамических расчетов по методу геохимической термометрии необходимо задать значения интенсивных параметров, приближающиеся к условиям внедрения расплавно-кристаллической смеси. Главные характеристики включают давление, окислительно-востановительные условия и содержание в системе воды.

Бураковско-Аганозёрский плутон целиком залегает среди архейских пород, поэтому оценить мощность перекрывающих отложений и литостатическое давление вблизи его кровли не представляется возможным. Однако нижний предел давления можно оценить из следующих соображений. В рамках гипотезы единого интрузивного тела правомочно предположить, что к началу эрозионных процессов объемные соотношения мафитов и ультрамафитов в разных блоках были близкими. По данным петрофизического моделирования [11] доля дунитов в Бураковско-Шалозёрском блоке составляет 44% от современного объема блока. Если учесть, что этот блок частично эродирован, то на основании модели строения плутона [1] можно сделать вывод, что доля зоны оливиновых кумулатов в первичном залегании составляла не более 35-40% первичного объёма. Если теперь допустить, что первоначальная форма Аганозёрского блока была близка к современной конусовидной, то это означает, что эрозией уничтожено не менее 1/2 его разреза, а максимальная первоначальная мощность блока (по высоте конуса) составляла 10-12 км. Столь значительная мощность интрузивной камеры обеспечивает гидростатический перепад давления 3-4 кбар. Кроме того, в породах плутона отсутствуют реакционные взаимоотношения Ol и Pl, поэтому верхний предел давления можно отнести к условиям устойчивости плагиоклаза, которые по данным [28] отвечают P 8 кбар. При моделировании фазовых равновесий в расплавах придонных пород, общее давление принято равным 6 кбар, как среднее между минимальной и максимальной оценками. Заметим, что небольшие погрешности в оценке общего давления (порядка 1-2 кбар) не должны значительно сказываться на результатах геохимической термометрии, поскольку увеличение давления на 1 кбар влечёт за собой повышение железистости Ol на 0.2 мол.% Fo [29]. Это практически не сказывается на положении траекторий эволюции состава расплава в координатах состав - температура.

Присутствие магнетита в верхних частях разреза позволяет предполагать "умеренно окислительные" условия формирования последовательности пород, которые отвечают небольшому окислению железа в расплаве (10-15 отн.%) и характеризуются интервалом буферных равновесий примерно от QFM-1 до QFM [30]. Такая неопределенность оценки летучести кислорода незначительно сказывается на составе модельного оливина и приводит к погрешностям не выше 0.5 мол.% Fo [2]. При проведении вычислений значения fO2 задавались в соответствии с буферным равновесием вюстит-магнетит (WM), которое близко к нижнему пределу вероятного диапазона редокс-условий.

Отсутствие гидроксил-содержащих минералов даже в поздних кумулятивных парагензисах [1] указывает на то, что с ранних до заключительных стадий накопления кумулата исходный расплав был недосыщен по содержанию H2 O. Вместе с тем о наличии некоторого количества воды в системе свидетельствует присутствие магматических амфиболов и слюд в мезостазисе. Грубую оценку для максимально возможного содержания воды в исходной жидкости можно получить, если принять, что верхние наиболее дифференцированные породы разреза отвечают ~ 80% кристаллизации исходной магмы. Это отвечает пятикратному накоплению H2 O в продуктах поздних стадий дифференциации. В случае насыщения остаточной магмы водой при Р=6 кбар содержание H2 O в конечном (предположительно "андезито-базальтовом") расплаве составляло бы 8-10 мас.%. Это означает, при отсутствии признаков насыщения водой конечных продуктов содержание H2 O в исходном расплаве не могло превышать 1.6-2.0 мас.%. По нашим оценкам на основе экспериментальных данных такие содержания воды приводят к понижению ликвидусной температуры оливина примерно на 30-40С [31]. Таким образом, масштабы этого эффекта не сильно выходят за пределы точности ЭВМ-модели КОМАГМАТ, что оправдывает последующие расчеты ликвидусных полей для оливина в сухих условиях.

Рис.6

Выбор образцов. Краевая группа плутона характеризуется широким набором дифференциатов и, как следствие, большим диапазоном вариаций содержаний петрогенных компонентов. Распределение главных породообразующих элементов в породах Краевой группы приведено на Рис. 6. На серии графиков представлены составы пород группы, вскрытых как на Аганозёрском, так и на Шалозёрском блоках. Для целей геохимической -термометрии главный интерес представляют дуниты и пойкилитовые перидотиты как наименее дифференцированные. Эти породы содержат от 25 до 45 мас.% MgO и при близких значениях магнезиальности характеризуются значительным разбросом содержаний FeO, CaO и SiO2 . Вероятно это связано с неизохимичностью процессов серпентинизации. Поэтому для термометрических расчётов следует выбирать образцы с наименьшими вторичными изменениями: такие породы вскрыты глубокими скважинами 20 и 67. Для последующих вычислений были отобраны 9 составов (Табл.1, ан. 1-9), представляющих 4 образца из скв.20 и 5 образцов из скв. 67. Характерно, что на графиках (Рис. 6) фигуративные точки их составов "выстраиваются" в сублинейные тренды.

По нашему мнению, природа этих трендов не связана с кристаллизационным фракционированием Ol и обусловлена различиями первичных пропорций оливиновых кристаллов и магматической жидкости в кумулатах Краевой группы. Эта ситуация отвечает условиям применимости метода геохимической термометрии, когда валовый состав каждой породы можно выразить как комбинацию комплементарных количеств Ol и исходного расплава при одной и той же температуре (см. выше).

Контроль состава первичного оливина. Если принять, что составы оливина и интеркумулусной жидкости в "наименее дифференцированных" породах Краевой группы отвечают интрателлурическим кристаллам и исходному магматическому расплаву, то имеется возможность оценить (проконтролировать) состав первичного Ol, не привлекая данные микрозондовых анализов или результаты моделирования фазовых равновесий. Этот простой графический подход основан на условии сохранения баланса масс, которое позволяет рассматривать произвольные продукты смешения двух крайних компонентов вдоль линии, соединяющей их составы на вариационных диаграммах. Одним из компонентов является исходный расплав (состав которого заранее не известен), а другим - оливин, в отношении состава которого можно сделать реалистичный прогноз. Этот минерал более чем на 99% сложен MgO, FeO и SiO2 [5], поэтому на графиках содержаний этих компонентов составы стехиометричных оливинов формируют линию, отвечающую переходу от крайнего магнезиального члена (Fo) к железистому (Fa). На Рис. 6 крестиками показан отрезок этой линии, включающий вероятный диапазон составов первичного оливина 80-90 мол.% Fo. Очевидно, что тренд "смешения" и "линия оливина" должны пересекаться в точке, которая отвечает исходному составу Ol, как одного из краевых компонентов.

Для 4-х образцов из скв. 20 (Аганозерский блок) это пересечение указывает на вероятный состав исходного оливина Fo86 0.3. В случае 5-ти образцов из скв. 67 (Шалозерский бл?

К-во Просмотров: 367
Бесплатно скачать Статья: Бураковско-Аганозёрский расслоенный массив Заонежья