Статья: Димеризация, олигомеризация и полимеризация этилена под действием комплексов никеля, содержащих хелатные лиганды

Реакции этилена, приводящие к образованию димеров, олигомеров и полимеров этилена представляют существенный интерес для химической промышленности. Эти реакции могут приводить к образованию линейных, разветвленных или циклических соединений. Как показано в табл. 1, линейные продукты имеют много важных областей применения, среди которых наибольший объем использования имеют моющие средства и сомономеры для получения ПЭ.

Комплексы никеля являются самыми распространенными катализаторами олигомеризации олефинов и проявляют наибольшую активность и селективность по отношению к олефинам. Никелевые катализаторы можно разделить на две группы: соединения никеля(П) в сочетании с алкильными или гидридными производными металлов основной группы (катализаторы Циглера-Натта) и металлоорганические комплексы, которые служат предшественниками каталитических комплексов.

Много лет назад мы показали, что хелатные комплексы никеля вызывают образование линейных продуктов из этилена с исключительно высокой хемоселективностью [1]. На схеме I изображены комплексы 1 и 2, которыеможно рассматривать в качестве предшественников активного Ni-Н-катализатора 3.


Рис. 1. Строение комплекса 1 по данным рентгеноструктурного анализа.

Реакция комплекса 3 с этиленом приводит к образованию комплекса 4, который после внедрения следующей молекулы этилена образует Ni-бутильный комплекс 5. Последний может отщеплять бутен-1 в результате реакции р-элиминирования, вновь образуя комплекс 3. Таким образом, каталитический цикл замыкается. Кроме элиминирования бутена-1, комплекс 5 может присоединять еще молекулы этилена, образуя комплексы Ni с высшими м-алкильными группами, которые затем могут по реакции Р-элиминирования отщеплять соответствующие а-олефины или воски, или даже ПЭ. В результате каталитического цикла, изображенного на схеме I, возникает распределение типа Шульца-Флори. Наилучшим образом оно описывается величиной Р-фактора, т.е. отношением скорости элиминирования на стадии обрыва цепи к скорости элиминирования на стадии роста. Когда стадия обрыва ф-элиминирование) протекает быстро, в продуктах реакции преобладают олефины С4 - С8 . Продукты с большой длиной цепи (ПЭ) получаются в том случае, когда преобладает реакция роста.

Механизм, приведенный на схеме I, подтверждается спектроскопическими исследованиями, проведенными insitu. Так, ЯМР исследования, выполненные в этих условиях, показывают, что в растворе присутствует гидрид никеля 3, который был зафиксирован при использованииPh2 PCH2 C(CF3 )2 OH в качестве лиганда [2]. Оказалось, что можно выделить этильный 4 и бутильный 5 комплексы никеля, а также комплексы Ni, содержащие высшие алкильные группы, которые являются продуктами многократного внедрения этилена. При нагревании эти комплексы отщепляют соответственно этилен, бутен-1 или высшие сс-олефины, возвращаясь тем самым к комплексу 3.

Таблица 1. Линейные производные этилена

Продукт Применение
Бутен-1

Полибутилен

Сомономер в производстве ПЭ

Гексен-1 Сомономер в производстве ПЭ
Октен-1 Продукты тонкого органического синтеза (жирные кислоты, меркаптаны), пластификаторы
Децен-1 Смазки
Олефины С12 - С18 Детергенты
Олефины С>20 Присадки
Олефины С>30 Воски
Олефины С ПЭ

Если образующиеся а-олефины не реагируют с Ni-Н-комплексом 3 (что привело бы к образованию соолигомеров), в продуктах реакции присутствуют только линейные производные; иначе говоря, реакция должна быть высоко хемоселективна только по отношению к этилену, а реакция передачи цепи должна отсутствовать.

Чтобы продемонстрировать высокую хемоселективность, проводили реакцию смеси, содержащей 50% этилена и 50% пропилена, с каталитическими количествами комплекса 1. Поглощение этилена наблюдали до тех пор, пока в смеси не достигалось процентное соотношение пропилен : : этилен, равное 90 : 10. Продукты, получающиеся при таком соотношении, содержали нечетное число атомов углерода (С5 , С7 и т.д.) [3].

Высокая хемоселективность объясняется наличием хелатного лиганда. По данным рентгеноструктурного анализа (рис. 1), комплекс 1 имеет плоскоквадратную структуру.

По нашему мнению, ответственным за высокую хемоселективность реакции является плоскоквадратное окружение металла. Ниже показан путь протекания реакции внедрения этилена, включающий стадию появления свободного координационного места в результате акта внедрения этилена.

Рост цепи протекает в трансположении относительно атома кислорода комплекса, в то время как свободные координационные места для входящей молекулы мономера после внедрения этилена возникают в трансположенияпо отношению к атому фосфора. Если этот механизм правилен, можно полагать, что кроме давления и температуры на получающееся распределение продуктов должны влиять стерические и электронные эффекты в хелатном лиганде. При изменении а-донорных и я-акцепторных свойств Р или хелатного кольца будет изменяться прочность связи вновь координирующейся молекулы этилена с металлом. Кроме того, на прочность связи Ni-углерод может также влиять строение лиганда.

Чтобы выяснить влияние этого фактора, в Аахене было синтезировано большое количество разнообразных хелатных комплексов никеля. Можно констатировать, что все комплексы, активные в реакции линейного присоединения по связи С-С, состоят из хелата и органического лиганда. Органическая часть только стабилизируеткомплекс, тогда как хелатный лиганд регулирует каталитическую активность и селективность.


Размер цикла в части также им решающее значение. Ниже изображены комплексы, которые отличаются размером [4].

Комплексы 6-8 содержат пяти – семичленные хелатные циклы. В комплексах 9 и 10 жесткого хелата увеличивается при введении в него соответственно двойной связи или ароматического цикла. Исследование реакции комплексов 6 с этиленом показало, что комплексы 6, 9, и 10 вольно активны в линейной олигомеризации, в то время как активность комплексов 7 и 8, содержащих гибкие шести- и семичленные циклы, невысока.

Ниже будет показано, что конструирование лиганда влияет на протекание реакций димеризации, олигомеризации и полимеризации этилена.


ДИМЕРИЗАЦИЯ

Чтобы получить преимущественно бутен-1, нужно понизить основность атома Р. Интересно отметить, что добавление Ph3 P к комплексу 1 является другим путем изменения величины р-фактора (табл. 2).

ОЛИГОМЕРИЗАЦИЯ

Олигомеризация олефина осуществлена компанией "Шелл" (процесс "Шелл" для получения высших олефинов - SHOP-процесс) [1, 5]. Этот процесс с общим объемом продукции ~1 млн. т является одним из примеров наиболее крупномасштабного применения гомогенного катализа на основе переходных металлов. На схеме II показаны первичные и вторичные продукты, получаемые в указанном процессе (добан, добанол, этоксилаты добанола и этоксисульфаты добанола - торговые названия поверхностно-активных веществ (детергентов))

Первая стадия представляет собой олигомеризацию этилена в а-олефины. Образующиеся а-олефины характеризуются геометрическим распределением, которое можно в некоторой степени регулировать изменением давления и температуры. Получаемый при этом набор а-олефинов трудно сбалансировано реализовать на рынке. По этой причине из смеси отгоняют только те а-олефины, которые можно продать - в основном С8 - С20 - Олефины, не находящие спроса на рынке, <С10 и >С2 о изомеризуют на второй стадии. На третьей стадии смесь олефинов с внутренними двойными связями подвергают реакции метатезиса, в результате которой олефины <С 10 и>С20 превращаются в олефины С10 - С14 (интервал, соответствующий детергентам), также отделяемые дистилляцией. Сочетание изомеризации иметатезиса с дистилляцией и рециклом создаетуникальную технологию для получения продуктов с заданным распределением по числу атомов углерода. Указанная схема процесса дает возможность получать олефины с любым числом атомов углерода. Ключом к решению проблемы явилась достигнутая хемоселективность. Были получены олефины, содержащие >95% ос-изомеров и степенью линейности,>99%. Селективность образования линейных олефинов важна при проведении метатезиса. В условиях метатезиса разветвленные олефины, содержащиеся в продуктах первой стадии, реагируют очень медленно, приводя к образованию малоактивных разветвленных олефинов, имеющих низкую рыночную стоимость.


Высокая селективность получения линейных α-олефинов в SHOP-процессе обеспечивает также оптимальное использование исходного материала, а именно этилена. Практически все произведенные в этом процессе продукты можно реализовать на рынке, побочные продукты фактически отсутствуют.

Для практики было бы важно иметь возможность так изменить распределение продуктов, полученных в соответствии со схемой I, чтобы получить линейные продукты с числом атомов углерода в наиболее желательном интервале С12 – С8 за счет соолигомеризации олигомеров С4 - С10 с этиленом. Мы обнаружили, что комплекс реагируя с ос-олефинами, образует в основном линейные димеры [6].

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 235
Бесплатно скачать Статья: Димеризация, олигомеризация и полимеризация этилена под действием комплексов никеля, содержащих хелатные лиганды