Статья: Генетический алгоритм, основанный на аутополиплоидии и предназначенный для усовершенствованной разработки линейных полифрактальных решеток

421-элементная генетически оптимизированная ПФР

Периоды 1-4

Число генераторов

Прирост скорости оценки


Рис.8. ДН и конфигурация решетки для 421-элементной генетически оптимизированной ПФР

Таблица III. Число генераторов и прирост скорости оценки ДН за период для 421-элементной ПФР. Выборка ДН производилась по 36000 точек.

Таблица IV. Свойства 421-элементной генетически оптимизированной ПФР. Число элементов, УБЛ (дБ), ШДНПМ, Минимальный интервал, Средний интервал

Аналогичный подход можно применить для дальнейшей оптимизации ПФР, разработанных в соответствии с методом, описанным в [14]. В этом случае вместо выбора для исходной совокупности 500 периодических решеток, использовались 500 256-элементных генетически оптимизированных ПФР. Решетки оптимизировали двумя генераторами с получением уровня бокового лепестка в - 18,84 дБ, ширины ДН по уровню половинной мощности в 0,28° (см. [14]). В Таблице Vприведены параметры, использованные при построении исходных решеток. Алгоритм поступательной разработки начался с исходного процесса аутополиплоидизации генератора и пертурбации, приведших к увеличению числа генераторов с 2 до 4-х. В поколении 100, когда самый пригодный член совокупности не показал явного усовершенствования в течение 30 поколений, оптимизация запустила вторую аутополиплоидизацию генератора. Такие процессы аутополиплоидизации генератора дают ступенчатую конфигурацию диаграммы разработки, как показано на Рис.9. Конечная однородно-возбуждаемая 256-элементная конструкция была найдена спустя 500 поколений и имела уровень бокового лепестка в - 21,2 дБ и ширину ДН в 0,46°. В среднем рекурсивный алгоритм был способен вычислять ДН в 3,3 раза быстрее для решеток с четырьмя генераторами и в 2,7 раза быстрее для решеток с восемью генераторами. В Таблице VIприведены характеристики по каждому периоду. На Рис.10 показан множитель решетки и геометрическая конфигурация антенной решетки, а в Таблице VIIприведены искомые рабочие свойства.

Таблица V. Параметры хромосомы для оптимизированной 256-элементной 2-х генераторной ПФР, описанной в [14]. Решетку использовали в качестве исходной в процессе аутополиплоидной оптимизации. 2-х генераторная ПФР, период 4

Рис.9. Диаграмма разработки 256-элементной генетически оптимизированной ПФР. Сплошной линией показана пригодность наилучшего решения, а пунктиром - средняя пригодность совокупности. Поколение / Пригодность Периоды 1-2 256-элементная генетически оптимизированная ПФР, описанная в [14] 256-элементная генетически оптимизированная ПФР

Таблица VI. Число генераторов и прирост скорости оценки ДН за период для 256-элементной ПФР. Выборка ДН производилась по 36000 точек. (Периоды 1-2/Число генераторов/Прирост скорости оценки)

Рис.10. ДН и конфигурация решетки для 256-элементной генетически оптимизированной ПФР

Таблица VII. Свойства 256-элементной генетически оптимизированной ПФР.

(Число элементов/УБЛ (дБ) /ШДНПМ/Минимальный интервал/Средний интервал)

Далее из исходной совокупности в 500 1296-элементных периодических решеток, имеющих интервал в 0,5λ, была построена оптимизированная однородно-возбуждаемая линейная ПФР с 1006 элементами и уровнем бокового лепестка в - 25,40дБ. Размер вырез?

К-во Просмотров: 205
Бесплатно скачать Статья: Генетический алгоритм, основанный на аутополиплоидии и предназначенный для усовершенствованной разработки линейных полифрактальных решеток