Статья: К решению теоремы Ферма

P . S . Встает вопрос: при каких условиях нецелое число 10,97... , возведенное в степень n=5 , превратится в целое число 159049 ? Напрашивается ответ: число 10.97... должно быть иррациональным т.е иметь после запятой неограниченное количество значащих цифр.

Остановимся на обосновании принятых в статье допущений (ограничений).

Принятие a =1 обусловлено получением максимальных , (*) при которых для всех a <1 нет решений уравнений Ферма в целых числах, а zn наиболее близок к 2 xn .

Принятие b =1 обусловлено тем, что 1 является единственным для всех n целым числом. Это подтверждается следующими соображениями. Из уравнения (*) имеем: , откуда b £ x ( n Ö 2-1) . Подставляя вместо х его близкое целое значение 2 n , получим формулуb £ 2 n ( n Ö 2-1) для практических расчетов, которые свидетельствуют о том, что вблизи начала координат ( на удалении х для каждой степени n) b изменяется от 1,65 при n=2 до 0 при возрастании n до ¥. Отсюда вывод: в растворе 450 сектора всюду b является нецелым числом, исключающим получение целых x,y,z при решении уравнений (1) и (2), за исключением одной точки, где b =1, которую следует проверять на наличие решения в целых числах x,y,z, что и было проделано выше с отрицательным результатом.

Расчеты при a=b=2,3,4…. относятся к точкам на значительном удалении от начала координат, кратным коэффициентам a=2,3,4….

Результаты расчетов при этом аналогичны выполненным при а=b=1, за исключением случаев, когда х определяется целым числом с конечным числом значащих цифр после запятой. Тогда можно подобрать такой коэффициент пропорциональности а умножение на который нецелых чисел х,у,z сделает их целыми числами, для которых будет справедливо ( x * a ) n +( y * a ) n =( z * a ) n .

В этом случае теорема Ферма станет недостоверной или имеющей исключения при n>2. В принципе теорема Ферма может считаться достоверной, если добавка P ( a , n )/ xn -1 является иррациональным числом. Тогда невозможно использовать коэффициент пропорциональности a .

В иррациональности добавкиP (1, n )/ xn -1 можно убедиться, если проводить многократное уточнение величины х методом последовательных приближений, ибо при делении целых числителей в добавке на нецелые, многократно уточняемые знаменатели, в составе добавки найдется хотябы один иррациональный результат деления, который превратит всю добавку в иррациональное число.

Наконец, анализируя расположение секторов на плоскости (x,y) и , учитывая, что нечетные функции xn и yn могут принимать положительные и отрицательные значения, можно составить следующую схему расположения этих функций на плоскости (x,y), т.е. в области распостранения условий теоремы Ферма:

- вся плоскость (x,y) - для четных показателей степени n

- квадрант I - для положительных x и y

- квадрант III- для отрицательных x и y

- в квадрантах II и IVдля нечетных n будут иметь место разности типа xn - yn или yn - xn , рассмотрение которых теоремой Ферма не предусмотрено.

ВЫВОДЫ

1. Разработан метод доказательства теоремы Ферма в общем виде. Определены основное уравнение (3) и рабочие формулы (2), (5), (6), (7) для проведения анализа и расчетов.

2. Решение уравнений Ферма в нецелых числах при n>2 обусловлено образованием на плоскости (x,y) искаженных (остроугольных) проекций функции yn + xn = zn . При проекциях в виде прямоугольных треугольников решения получаются в целых числах.

3. Теорема Ферма распространяется на всю плоскость (x,y), кроме II и IV квадрантов при нечетных n.

Николай Иванович Пичугин, ветеран ВОВ иВС,

Москва 2001 – 2004 год

Т. 396 –90-24

e –meil:[email protected]

К-во Просмотров: 514
Бесплатно скачать Статья: К решению теоремы Ферма