Статья: Колебания продольные… и рождение неопределённости
Обращаясь к основным дифференциальным уравнениям колебаний, мы заметим, что когда умножим их на – = к2 , они будут содержать члены, из которых одни имеют коэффициентом квадрат скорости и поперечных колебаний, другие – квадрат скорости продольных колебаний.
Первые члены в случае колебаний продольных должны исчезнуть из уравнений, и мы получаем первую группу:
Так как поверхность p по нашему выбору есть поверхность волны, то в уравнениях § 7 мы должны удержать одно колебание R и приравнять нулю колебания /?! и R.2 , совершающиеся в плоскости, касательной к волне. Вследствие этого находим, полагая // =1:
Так как А = 0, то уравнения (1) примут вид:
Умножая первое из уравнений (2) на //i //2 , дифференцируя по p и обращая внимание на уравнение (4), находим:
что по уравнениям (2) В не зависит ни от рх , ни от [–]. Следовательно, означая через &F частную производную от функции F по одной из переменных ^, р.2 , мы получаем из уравнения (7):
Подставляя в это выражение величины Н1 Н2 , найденные в п.п. 3, приравнивая нулю коэффициенты при различных степенях, мы находим следующие условия, которым должна удовлетворять волновая Ф – я
Известно, что подобные соотношения имеют место только для сферы, круглого цилиндра и плоскости.
Отсюда имеем, что изотермические волновые поверхности могут распространять колебания продольные.
Итак, если поверхность сотрясения или начальная волна не принадлежат к поверхностям изотермических волн, то вблизи их колебания происходят смешанные , но на значительных расстояниях волна приближается к виду одной из изотермических волн, и в явлении обнаруживаются колебания продольные. СТОП!!!
Остается проинтегрировать приведенные дифференциальные уравнения для сферы, с использованием гармонических функций!!!
Эксперименты Теслы – гармонический осциллятор – недопустим!!!
Для сферы в координатах, уже нами употреблённых, мы имеем:
Дальнейшие преобразования несущественны и не приводятся, так как приводят к исходному уравнению , не имеющему физического смысла для солитоноподобных волн.
Найденные выводы одинаково применимы к явлениям света в телах однородных и притом в тех пределах приближения, которые имеют место в теории Буссинеска!?
Отсюда: «болевой момент» выявлен.
Н. Умов математический сборник, т. 5, 1870 г. [7].
Ещё одна «страшная» неопределённость
--> ЧИТАТЬ ПОЛНОСТЬЮ <--