Статья: Кривые, заданные в полярных координатах
Отметим следующие интересные свойства четырехлепестковой розы:
• четырехлепестковая роза есть геометрическое место оснований перпендикуляров, опущенных из начала координат на отрезок длиной 1, концы которого скользят по координатным осям;
• площадь, ограничиваемая четырехлепестковой розой, равна .
Розы Гранди нашли свое применение в технике, в частности, если некоторая точка совершает колебание вдоль прямой, вращающейся с постоянной скоростью вокруг неподвижной точки — центра колебаний, то траектория этой точки будет розой.
Вообще, если k — натуральное число, то роза состоит из 2kлепестков при четном kи из k: лепестков при k нечетном. Если k — рациональное число (k=, то роза состоит из т лепестков в случае, когда оба числа т и п нечетные, и из 2т лепестков, когда одно из этих чисел является четным; при этом лепестки частично перекрываются. Если k - иррациональное число, то роза состоит из бесконечного множества частично перекрывающихся лепестков.
Лемниската Бернулли
р2 = 2соs2.
Лемниската Бернулли — одна из самых замечательных алгебраических линий. Из вида уравнения кривой следует, что кривая состоит из двух симметричных лепестков (по внешнему виду эта кривая напоминает перевернутую восьмерку или бантик). Для точек лемнискаты должно выполняться нера-венство соs2, поэтому она расположена между прямыми у=±х. Отметим также, что = при = 0.
Покажем, как построить лемнискату Бернулли. Но сначала отметим, что, поскольку квадрат полярного радиуса неотрицателен, должно выполняться неравенство соs2. Решая это неравенство, находим область допустимых углов:
0≤ ,
В силу периодичности функции соs2 (ее период равен π) достаточно построить график для углов в промежутке а в остальных случаях использовать периодичность
Итак, пусть Если угол изменяется от до π ,то cos2изменяется от 0 до 1 и, следовательно, изменяется от 0 до
Если угол изменяется от π до , то изменяется от до 0 .Таким образом при изменении угла от точка на плоскости описывает кривую, напоминающую половинку от восьмерки, и возвращается в начало координат. Вторая половинка получится, когда уголизменяется в пределах от 0 до и от до 2π.
Лемниската Бернулли обладает рядом оригинальных геометрических и механических свойств:
• угол, составленный касательной к лемнискате в произвольной точке с радиус-вектором точки касания равен 2
• перпендикуляр, опущенный из фокуса лемнискаты на радиус-вектор какой-либо ее точки, делит площадь соответствующего сектора пополам;
• эта кривая (в переводе с латинского lemniscatus— украшенный лентами) есть множество точек М, произведение расстояний которых r1 , и r2 до двух данных точек F1 , и F2 (фокусов) равно квадрату междуфокусного расстояния.
Впервые лемниската была рассмотрена Якобом Бернулли (1654—1705) в 1694 г. Впоследствии Бернулли много часов своих занятий уделял лемнискате и нашел несколько ее интересных свойств.
В технике лемниската используется, в частности, в качестве переходной кривой на закруглениях малого радиуса, как это имеет место на железнодорожных линиях в горной местности и на трамвай-ных путях. Таким образом она обеспечивает плавность закругления, без которой центробежная сила, действующая на поезд, возрастала бы резко, доставляя неудобство пассажирам.
В качестве примера применения лемнискаты в области физики можно указать, что линия поля, создаваемого двумя параллельными токами, текущими по бесконечно длинным проводникам в плоскости, к ним перпендикулярной, является лемнискатой.
Кардиоида
логарифмическая спираль полярный координата лемниската
= 2(1 — соs).
Понаблюдаем за какой-нибудь точкой окружности, когда последняя катится по внешней стороне неподвижной окружности такого же радиуса. Траекторией точки будет кардиоида. По мнению математиков, придумавших название кривой, она отдаленно напоминает форму сердца (в переводе с греческого kardieidos— сердцеобразная).
Покажем способ построения кардиоиды.
Сначала выберем опорную окружность и ее радиус ОА примем за 1, а прямую ОА — за ось абсцисс, причем точка А произвольно выбирается на опорной окружности. Проведем другую окружность с центром в точке М, произвольно взятой на опорной окружности, и радиусом МА. Повторив затем такие построения для достаточно большого числа точек М, равномерно распределенных по опорной окружности, увидим, что огибающая всех окружностей радиуса МА и есть кардиоида (рис. 13).
Кардиоида используется как линия для вычерчивания профилей, если требуется, чтобы скользяший по профилю стержень совершал гармонические колебания. При этом скорость поступательного движения стержня будет изменяться без скачков. Этим свойством она выгодно отличается от спирали Архимеда, у которой, благодаря постоянности скорости стержня, в конце каждого хода стержня происходят удары (скорость скачком меняет значение скорости с vна —v), что вызывает быстрое изнашивание механизма.
Одна из составных частей в механизме для поднятия и опускания семафора очерчена по кардиоиде. При этом скорость поднятия' или опускания достигает максимального значения в середине хода семафора, что очень важно.