Статья: Кубатурные формулы для вычисления интеграла гармонической функции по круговой луночке

Вычисление интегралов - задача, которая до сих пор интересует как физиков, так и математиков.

В настоящей статье в § 4 предложена формула в виде ряда для вычисления интеграла от гармонической функции по круговой луночке. Эта формула является обобщением теоремы о среднем.

Для того чтобы построить подобное представление в виде ряда, понадобилось ввести (§ 1) некую специальную последовательность гармонических полиномов, которая является базисом пространства типа Бергмана [1]. Введенная последовательность изначально не является ортогональной, поэтому в § 2 предлагаются формулы для вычисления скалярных произведений от базисных функций для того, чтобы применить метод Грама-Шмидта.

1. Области, функциональное пространство, полиномиальные последовательности

Ограниченную область S в R2 назовем круговой луночкой, если ее граница Г состоит из двух дуг окружностей Г1 и Г2, пересекающихся в угловых точках С1 и С2. Угол между Г1 и Г2 обозначим через . Введем в R2 декартову систему координат (x,y), поместив ее начало в середину отрезка С1С2, абсолютная величина которого равна 2, и направив ось абсцисс перпендикулярно к нему. С помощью биполярных координат [2]

(1.1)

круговая луночка S конформно отображается в бесконечную полосу.

Обозначив обратное к (1.1) преобразование как  =(x,y),  =(x,y), отметим, что поверхность (x,y)=j совпадает с Гj. Любая луночка S однозначно определяется заданием 1 и , т.е. S=S(1,). Для произвольной функции u(x,y) суперпозицию u(x(,),y(,)) обозначим как u(,).

В качестве функционального пространства будем рассматривать множество, являющееся подпространством так называемого пространства Бергмана b21, состоящее из гармонических в S функций u(x,y) класса W21(S), обладающих непрерывными следами на частях Г1 и Г2 границы Г. Кроме того, потребуем, чтобы функция fj()  u(,j) = u(x,y)Гj , j = 1,2, удовлетворяла на Гj условию Гельдера с показателем d0. Совокупность всех таких элементов u(x,y) обозначим как W(S). Определим в W(S) скалярное произведение, положив:. Здесь (x0,y0) - произвольная внутренняя точка из S.

Рассмотрим функцию комплексного переменного z = x+iy: .

Функции u0 и v0 принадлежат W0(S) и в биполярных координатах имеют следующий вид:



(1.2)

Используя формулу [3, (7.117)] с некоторыми дополнительными вычислениями, можно получить интегральные представления:

(1.3)

Интегралы в (1.3), очевидно, сходятся при a(-,), b2.

Функции u0(,) и v0(,) удовлетворяют условиям Коши-Римана и аналитичны в окрестности любой точки  из интервала (0,2). Значит, для такого  и вещественного t, удовлетворяющего условию | t | max(, 2-), имеют место разложения:

(1.4)

Здесь и далее под k понимаются функции uk или vk, k = 0,1,.... Коэффициенты uk(,), vk(,) этих разложений при k1 обладают рядом интересных свойств.

1. Из (1.4) следуют рекуррентные соотношения:

(1.5)

2. Применим (1.5) к интегралам в (1.3), вычислим полученные равенства по формулам [3, (7.113), (8.108)] и, учитывая (1.1), получим в переменных (x,y):

(1.6)

3. Соотношения (1.4) в декартовых координатах принимают вид:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 158
Бесплатно скачать Статья: Кубатурные формулы для вычисления интеграла гармонической функции по круговой луночке