Статья: Метод бесконечного спуска

Какое иррациональное число самое «старое»? Несомненно, √2. Мы не знаем точно, кто первый доказал иррациональность этого числа, однако мы убеждены, что сделано было это примерно так.

Доказательство первое

Допустим, что число √2 рационально. Геометрически это означает, что диагональ квадрата длины c соизмерима с его стороной длины a, то есть найдутся отрезок длины d и целые числа m и n такие, что c = dm, a = dn. Отметим m–1 точек на диагонали AC и n–1 точек на стороне DC, делящие эти отрезки на кусочки длины d. Отложим на [AC] отрезок AK: |AK| = |AD|; на [DC] — отрезок DE: |DE| = |KC|. Точки K и E попадут в отмеченные точки (см. рис.). Докажем, что треугольники ACD и KEC подобны. Угол C у них общий. Достаточно, значит, проверить равенство

|KC|

|EC|

=

|CD|

|AC|

.

Заметим, что |KC| = c – a, |EC| = 2a – c. Поэтому

|KC|2

|EC|2

=

c2 + a2 – 2ac

c2 + 4a2 – 4ac

.

Поскольку c2 = 2a2, то

|KC|2

|EC|2

=

3a2 – 2ac

6a2 – 4ac

=

1

2

=

|AD|2

|AC|2

.

Таким образом, треугольник KEC, подобный треугольнику ACD, — прямоугольный равнобедренный, и мы можем проделать на его сторонах такое же построение, как на сторонах треугольника ACD. Отложим на [EC] отрезок EK1: |EK1| = |KC|; на [KC] — отрезок KE1: |KE1| = |K1C|. Точки K1 и E1 вновь попадут в точки деления. Треугольник K1CE1 снова окажется прямоугольным равнобедренным. Для него мы тем же способом построим треугольник K2CE2; эту процедуру можно продолжать без конца. При этом треугольники KjCEj становятся всё мельче, но всякий раз точки Kj и Ej будут попадать в первоначальные точки деления отрезков AC и CD. Но ведь этих точек только конечное число! А треугольников KjCEj бесконечно много. Это противоречие и доказывает иррациональность √2.

Прошли века... Появилось алгебраическое доказательство, пожалуй, более простое.

Доказательство второе

Иррациональность √2 означает, что у уравнения x2 = 2y2 нет решений в натуральных числах x, y. Допустим, что такие решения есть, и x = m, y = n — одно из них.

Из уравнения следует, что m — чётное число, m = 2m1. Подставляя m = 2m1 в уравнение, получаем n2 = 2m12, то есть x = n, y = m1 — тоже решение. Отметим при этом, что n < m, m1 < n. Теперь видно, что n — чётное число, n = 2n1, следовательно, m12 = 2n12. Таким образом, x = m1, y=n1 — решение уравнения, при этом m1 < n, n1 < m1. Мы можем поступать так же и дальше, получая всё меньшие и меньшие решения уравнения. Но здесь-то уже и есть противоречие. Ведь все числа m, n, m1, n1, ... — натуральные, m > n > m1 > n1 > ..., а бесконечной убывающей последовательности натуральных чисел быть не может! Значит, наше предположение было ошибочно, и число √2 иррационально.

Оба рассуждения по существу проходили по одной схеме: предположив, что у задачи есть решение, мы строили некоторый бесконечный процесс, в то время как по самому смыслу задачи этот процесс должен на чём-то кончаться. Подобный метод и называется методом бесконечного спуска *.

Часто метод спуска применяется в более простой форме. Предположив, что мы уже добрались до естественного конца процесса, мы видим, что «остановиться» не можем.

Доказательство третье

Пусть x = m, y = n — решение уравнения x2 = 2y2 с наименьшим возможным x. Число m должно быть чётным, m = 2m1, следовательно, x = m, y = m1 — тоже решение нашего уравнения. Однако m > n, что противоречит выбору решения m, n как «наименьшего».

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 254
Бесплатно скачать Статья: Метод бесконечного спуска