Статья: Модифицирование ПАН волокна с целью снижения горючести
Одним из критериев, определяющих возможность применения полимеров во многих отраслях промышленности, является их горючесть. Проблема снижения их пожарной опасности является одной из важнейших научных и практических задач. Это подтверждается принятием в Российской Федерации закона «О пожарной безопасности». Поэтому проблемы снижения горючести текстильных материалов остаются в центре внимания исследований. Об этом свидетельствуют прогнозы на увеличение производства огнезащитных текстильных материалов.
В современных методах снижения горючести ПАН волокна уделяется большое внимание поверхностной обработке тканей и волокон замедлителями горения (ЗГ) или огнезамедлительными системами (ОГЗС).
Следует отметить, что эффективных для снижения горючести ПАН волокон ЗГ не много, поэтому в данной исследовательской работе рассматривалась модификация ПАН волокон с использованием синергетических систем, состоящих из пирофакса (ПФ), диамидометилфосфата (Т‑2). Для фиксации ЗГ в структуре волокна и сохранности огнезащитного эффекта применялись различные соединения: мочевина (МО), полисахариды (ПСХД).
Процесс модифицирования осуществлялся по ранее выбранному режиму [1] и включал следующие стадии: пропитка готового волокна растворами ЗГ при различном соотношении компонентов при температуре 20°С в течении 60 сек., модуле ванны 5; сушка до постоянной массы при температуре 25+5°С; термообработка при температуре 150°С в течении 10 мин. – для проявления взаимодействия ЗГ с волокном; промывка при 40°С для удаления непрореагировавшего препарата; сушка.
Расчет коэффициента эффективности сорбционного взаимодействия волокна с ЗГ, характеризующего сохранение ЗГ на волокне после стирки показал, что наибольшее повышение эффективности сорбционного взаимодействия достигается введением в модифицирующую ванну МО, табл. 1, которая может образовывать соединения включения как с органическими, так и с неорганическими веществами.
В связи с тем, что ПАН волокно при повышенных температурах переходит в растеклованное состояние при исследованиях выявили влияние этих условий на эффективность взаимодействия ЗГ с волокном.
Таблица 1. Влияние состава модифицирующей ванны на эффективность взаимодействия ЗГ с ПАН волокном
Содержание модифицирующей ванны, % масс. | Коэффициент эффективности сорбционного взаимодействия ЗГ с волокном, % |
20Т‑2+ПСХД | 76 |
20 (Т‑2+ПФ)+ПСХД | 87 |
30 (Т‑2+ПФ)+ПСХД | 88 |
30 (Т‑2+ПФ)+МО | 97 |
При модификации исследуемыми ЗГ и ОГЗС установлена, рис. 1, большая эффективность при обработке волокна ванной, содержащей смесь ЗГ (Т‑2+ПФ)+ПСХД и этот эффект сохраняется при всех способах модификации. Вместе с тем, следует отметить, что предварительная термическая обработка немодифицированного ПАН волокна при температуре 100°С, а также пропитка его ванной с температурой 85°С незначительно изменяют эффективность сорбционного взаимодействия ЗГ с ПАН волокном.
Известно [3], что для снижения горючести ПАН волокон необходимо предотвратить деполимеризацию, приводящую к образованию горючих летучих соединений, таких как нитрилы, цианистый водород, аммиак, и создать условия для реакции циклизации, способствующей коксообразованию. В связи с этим, методом термогравиметрического анализа (ТГА) исследовали закономерности процесса пиролиза модифицированных волокон.
Для исходного немодифицированного ПАН волокна в интервале температур 210–2700 С начинаются процессы циклизации, обеспечивающие создание структуры полимера, способной формировать карбонизованный остаток (КО). Однако при повышении температуры процессы деполимеризации становятся преобладающими – значительно возрастают потери массы волокна и скорости потерь массы.
С введением в состав волокна ЗГ и ОГЗС процессы циклизации в модифицированном волокне начинаются при меньших, чем для исходного ПАН волокна температурах, табл. 2, 3, и протекают с меньшими скоростями. Это сопровождается большим выходом коксового остатка (КО) Сформировавшийся кокс характеризуется большей термостойкостью, так как потери массы при температурах выше 5000 С у модифицированных волокон меньше, что свидетельствует не только об инициирующем влиянии ЗГ на коксообразование, но и на структуру КО. При пиролизе модифицированного волокна снижается общий выход летучих продуктов, уменьшается величина экзотермических пиков, соответствующих процессу циклизации полиакрилонитрила, снижается энергия процесса циклизации.
Таблица 2. Данные пиролиза модифицированных волокон
№ п/п | Состав образца |
Температура деструкции, 0 С,
|
Δm при Тк, % | Потери массы, % масс., при температуре, 0 С |
Е акт процесса циклизации, кДж моль | |||||||
200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | |||||
1 | ПАН |
210–265 240 | 18 | 2 | 21 | 29 | 38 | 60 | 80 | 95 | 98 | 130* |
2 | (ПАН+ Т‑2+ПФ)+МО |
170–295 245 | 24 | 20 | 24 | 34 | 38 | 42 | 48 | 57 | 72 | 61,4 |
3 | (ПАН+Т‑2)+ПСХД |
160–280 240 | 16 | 7 | 16 | 25 | 35 | 50 | 61 | 72 | 86 | 62 |
4 | (ПАН +ПФ)+ПСХД |
140–250 210 | 15 | 11 | 16 | 24 | 31 | 35 | 41 | 51 | 62 | 49,3 |
5 | (ПАН +Т‑2)+МО+ПСХД |
160–265 235 | 31 | 20 | 34 | 40 | 45 | 50 | 59 | 70 | 80 | 63,6 |
6 | (ПАН +ПФ)+МО+ПСХД |
170–290 --> ЧИТАТЬ ПОЛНОСТЬЮ <-- К-во Просмотров: 178
Бесплатно скачать Статья: Модифицирование ПАН волокна с целью снижения горючести
|