Статья: Модифицирование ПАН волокна с целью снижения горючести

160–300

245

18 12 18 27 32 37 44 54 67 53,9 8 (ПАН+Т‑2 +ПФ)+ +МО+ПСХД (СВЧ – обработка)

180–290

240

30 21 30 37 41 46 52 61 73 64,2

Примечание: Тн, Тmax, Тк – начальная, максимальных потерь массы и конечная температуры деструкции; rm – потери массы при Тк; * – литературные данные.

Таблица 3. Влияние стадий модификации на показатели пиролиза ПАН волокон

№ п/п

Состав образца

Температура

деструкции, 0 С,

Δm при Тк%, Потери массы, % масс., при температуре, 0 С
200 300 400 500 600 700 800 900
1 ПАН

210–265

240

18 2 21 29 38 60 80 95 98
2 (ПАН+ Т‑2+ПФ)+МО

170–295

245

24 20 24 34 38 42 48 57 72
3 (ПАН+ Т2+ПФ)+МО + термообработка

165–280

240

20 16 22 30 34 40 45 55 69
4 (ПАН+ Т2+ПФ)+МО + стирка

150 – 280

225

16 14 19 27 34 54 70 82 91

Как показали результаты анализа, наиболее эффективными ЗГ для ПАН волокон являются ПФ, МО, ПСХД, что объясняется наличием в их составе реакционноспособных групп, а также способностью МО и ПСХД образовывать комплексные соединения. Кроме того, ПХДС относится к обволакивающим средствам и может образовывать на поверхности волокна защитный слой, предотвращающий вымывание ЗГ из его структуры.

Изменения, происходящие в процессе пиролиза полимеров, влияют на горючесть волокнистых материалов на основе модифицирующих волокон. Огнестойкость оценивали по показателю воспламеняемости полимеров – кислородному индексу (КИ), а также по потерям массы образцов при поджигании их на воздухе.

Анализ данных позволяет сделать вывод об эффективности взаимодействия ЗГ с ПАН волокном, что подтверждается увеличением значения КИ с 18% об (для исходного ПАН волокна) до 34,5% об. (для модифицированных систем), табл. 4. Однако однократная стирка снижает значение КИ.

Таблица 4. Показатели горючести образцов ПАН волокон

Модификация ПАН волокон из ванн, содержащих масс. % Потери массы при поджигании на воздухе, % масс., по стадиям обработки КИ, % об.
пропитка термообработка промывка пропитка
20Т‑2+ПСХД 5,2 5,3 2,9 25,0
20 (Т‑2+ПФ)+ПСХД 7,5 8,1 11 32,0
30 (Т‑2+ПФ)+ПСХД 8,3 13,6 54 31,5
30 (Т‑2+ПФ)+МО 18 12 1 29,0
30 (Т‑2+ПФ)+ПСХД+МО 6,9 4,8 2 34,5

Основные физико-механические показатели модифицированного ПАН волокна зависят от многих факторов, в том числе, и от состава модифицирующей ванны. Наибольшее усилие, удерживаемое волокном до разрыва, наблюдается у образцов следующих составов (ПАН+30Т‑2)+ПСХД, (ПАН+30ПФ)+ПСХД, рис. 3.

Модифицированные волокна могут быть особенно перспективны при изготовлении ковров, напольных покрытий, тепло- и звукоизоляционных материалов и в производстве углеродных волокон.


Литература

1. Щербина Н.А. Полиакрилонитрильные волокна пониженной горючести / Н.А. Щербина, Е.В. Бычкова, И.Н. Синицына, Панова Л.Г. // Международный симпозиум восточно-азиатских стран по полимерным композиционным материалам и передовым технологиям: Докл. Международного симпозиума «Композиты XXI века», Саратов, 20–22 сентября, 2005.-Саратов, 2005. – С.392–394.

2. Щербина Н.А. Эффективность действия замедлителей горения на модифицированные волокна// Н.А. Щербина, Е.В. Бычкова, Панова Л.Г. // Перспективные полимерные композиционные материалы. Альтернативные технологии. Переработка. Применение. Экология.: Докл. IV Междунар. конф. «Композит 2007», Саратов, 3–6 июля, 2007. – Саратов, 2007.-С.337–339

3. Термо-, жаростойкие и негорючие волокна / Под ред. А.А. Конкина.‑М.: Химия, 1978. – 424 с.

Приложение

К-во Просмотров: 180
Бесплатно скачать Статья: Модифицирование ПАН волокна с целью снижения горючести