Статья: О природе фундаментальных констант

Обращает на себя внимание отсутствие общего определения планковских величин. В дальнейшем планковской величиной будем называть любую физическую величину, составленную согласно размерности из фундаментальных констант ћ, с, G и k [20]:

Xpl = ћa Ч cb Ч Gg Ч kd (9)

Согласно этому определению, запишем некоторые новые величины: гравитационный потенциал j G = с2 (a = g = d = 0, b = 2); электрический потенциал j e = c2G–1/2 (a = d = 0, b = 2, g = –1/2); скорость vpl = с (a = g = d = 0, b = 1); действие А = ћ (b = g = d = 0, a = 1); электрическое сопротивление R = с–1 (a = g = d = 0, b = – 1): энтропия S = k (a = b = g = 0, d = 1) и т.п. Как видим в значении максимального электрического потенциала отсутствует величина заряда. Впервые на эту особенность обратили внимание M.А.Марков и В.П.Фролов [21]. Они и указали на предельный характер рассматриваемого потенциала.

Все работы, посвященные исследованию предельных величин, не касаются тех сложных моментов, которые связаны с трудностями интерпретации понятия предельности физической величины. Это обусловлено тем обстоятельством, что проблема носит принципиальный характер и требует более глубокого анализа природы фундаментальных констант. Единственная планковская величина, вопрос о предельности которой является актуальным в настоящее время, – скорость света. Зачастую предельное значение любой физической величины трактуется как невозможность получения какой-либо информации об этой величине за данным пределом. Полагая реально существующими планковские значения физических величин, мы с необходимостью приходим к возникновению ряда противоречий, в частности с некоторыми следствиями специальной теории относительности (СТО).

Действительно, согласно СТО, плотность вещества объекта (например, элементарной частицы) при v ® с стремится к бесконечности, тогда как существует инвариантное планковское значение плотности rрl; размер любого объекта в направлении движения при v ® с стремится к нулю, в то время как существует инвариантное планковское значение длины lpl. Подобное противоречие, связанное с появлением в физике инвариантной величины скорости света, было снято созданием СТО. При этом, согласно правилу сложения скоростей релятивистских объектов, суммарная скорость для инерциального наблюдателя ограничена инвариантной величиной планковской скорости – скоростью света. Аналогичную интерпретацию могут иметь и некоторые другие планковские величины. Указанные выше противоречия устраняются, например, введением в СТО дополнительной, известной из других теорий инвариантной физической величины.

В качестве одной из возможностей рассмотрим, к каким следствиям приводит введение в СТО планковского значения гравитационного потенциала j G = c2. В наиболее явном виде эта процедура представлена в работе X.-Ю. Тредера [22].

В качестве отправного условия считаем существующим предельное значение гравитационного потенциала для покоящегося удаленного от объекта наблюдателя (рассматривается решение Шварцшильда):

j G = c2/2 (10)

Пусть, далее, этот сферически симметричный и незаряженный объект с массой покоя m0' и радиусом R0' движется со скоростью v относительно системы отсчета наблюдателя в некотором направлении х. Значение гравитационного потенциала на поверхности объекта j ' = GM0'/R0'.

Тогда, согласно ОТО, геометрия пространства-времени вне объекта для покоящейся относительно него системы отсчета описывается метрикой Шварцшильда. Соответствующее преобразование Лоренца дает связь между гравитационными потенциалами в покоящейся и движущейся системах отсчета [23]:

j = j ' [(1 + v2/c2)/(1 – v2/c2)]. (11)

При условии существования предельного значения гравитационного потенциала (10) и при фиксированных M0' и R0' значение потенциала (11) в системе отсчета наблюдателя достигает своего максимального значения при скорости

vmax = [(1 – j '/c2)/(1 + j '/c2)].

Скорость vmax соответствует максимальной скорости объекта, информация с которого в направлении движения непосредственно может быть получена удаленным наблюдателем. Это связано с тем условием, что на поверхности объекта в направлении движения при v = vmax. реализуется максимальное значение гравитационного потенциала, соответствующее поверхности шварцшильдовской черной дыры. Интервал собственного времени на поверхности бесконечно удлиняется по отношению к интервалу времени удаленного наблюдателя, относительно которого рассматривается движение. Как следствие, имеет место полный сдвиг частот, что и делает невозможным получение с объекта какой-либо информации. При увеличении скорости объекта наблюдатель будет видеть бесконечное приближение ее к vmax.

В этом решении vmax играет роль, которая в СТО отводится скорости света, и является инвариантной величиной относительно преобразований Лоренца в силу инвариантности собственных параметров объекта, массы покоя и радиуса в покоящихся системах отсчета. Обратный переход к СТО, согласно принципу соответствия, достигается “выключением” гравитационных эффектов, т.е. при GM0' ® 0 vmax ® c. Тредер [24] считает vmax предельно возможной скоростью движения объектов, в частности элементарных частиц. Опираясь на результаты предварительно проведенного анализа, мы связываем vmax с проявлением “координатного эффекта”, аналогичного ситуации “пересечения” наблюдателем сферы Шварцшильда в ОТО и обусловленного, как известно, выбором системы координат [25].

Рассмотрим движение частицы с характерным комптоновским размером l = ћ/mc. Тогда из условия (12) имеем

vmax ~ c (1 – m2/mpl2)1/2 (13)

Для объектов, относящихся к элементарным частицам с собственной массой mpl (далее мы будем называть их планкеонами), следует удивительный результат:

vmax = 0 (14)

Эти объекты не могут быть наблюдаемы нами в состоянии движения [26]. Данное свойство инвариантно относительно преобразований Лоренца как в силу инвариантности самой величины vmax, так и вследствие известной инвариантности фундаментальных констант ћ, с и G. Планкеоны в этом случае представляют собой элемент абсолютного покоя в той степени, в какой является абсолютным движение квантов света всегда с постоянной скоростью относительно любой инерциальной системы отсчета.

Среда, составленная из плотно упакованных планкеонов, может служить моделью вакуумоподобного состояния материи, т.е. современного релятивистского квантово-гравитационного эфира [27]. При этом покой среды как целого относительно произвольно выбранного инерциального наблюдателя позволяет считать любую систему отсчета, связанную с данной средой, сопутствующей. Трехмерный импульс такой среды равен нулю, и нет того преимущественного направления, которое делало бы среду (эфир) неизотропной. При этом четырехмерный вектор энергии-импульса (Е, р = 0) будет инвариантным в любой другой инерциальной системе отсчета вследствие инвариантности собственной массы планкеона Epl = mpl c2 = (ћc5/G)1/2. Отметим, что характерный размер планкеона lpl в отличие от рассматриваемых в настоящее время пространственных характеристик вещественных объектов является инвариантом преобразований Лоренца.

Важным основанием отнесения объекта к тому или иному виду материи выступает понятие массы. С этой позиции в силу инвариантных свойств массы планкеона последний нельзя рассматривать ни как вещество, ни как поле. По-видимому, планкеоны необходимо отнести к новому, третьему, виду материи – эфиру. Данная гипотеза не является полностью оригинальной и в отдельных аспектах рассматривалась неоднократно [28].

С точки зрения кинематических свойств планкеонного эфира представление о нем не находится в противоречии с основами СТО. Подобную возможность не отрицал и ее создатель: “Специальная теория относительности запрещает считать эфир состоящим из частиц, поведение которых во времени можно наблюдать, но гипотеза о существовании эфира не противоречит специальной теории относительности. Не следует только приписывать эфиру состояния движения” [29].

Свойство инвариантного покоя является той альтернативой, которая не была рассмотрена в свое время при анализе всех возможных кинематических условий существования эфира. Действительно, при абсолютном покое эфира относительно любой инерциальной системы отсчета законы, описывающие явления природы, не будут находиться в зависимости от состояния движения. Покой и равномерное прямолинейное движение в этой среде неразличимы. При таких и только при таких условиях, накладываемых на среду, может выполняться принцип относительности, подтвержденный многолетней практикой. Более того, в таком и только в таком абсолютно покоящемся эфире всегда выполняется принцип постоянства скорости света. Причем постулат инвариантности скорости света относительно любого инерциального наблюдателя является равносильным положению об инвариантности покоя эфира относительно тех же инерциальных наблюдателей.

Невозможность обнаружения эфира с помощью равномерного движения должна быть с необходимостью связана с необычным уравнением состояния этой среды. Общая теория относительности рассматривает такую среду [30], уравнение состояния которой: Р = – e (Р – давление, e – плотность энергии) – позволяет интерпретировать ее как “макроскопически обладающую свойствами вакуума” [31] (эфира). Именно в такой среде любая инерциальная система отсчета является сопутствующей, а ее движение и покой неразличимы. Внутреннее давление среды отрицательно и по абсолютной величине равно плотности энергии. “При такой и только при такой связи между давлением и плотностью среда не создает встречного ветра, как бы мы ни перемещались в ней” [32]. Для планкеонов, при рассмотрении их как микровселенных де Ситтера, оказывается справедливым вакуумо-подобное уравнение стояния Р = – e [33]. Таким образом, представление о планкеонном эфире не противоречит и общей теории относительности.

Используемое в квантовой электродинамике, чтобы не возрождать понятия движущегося эфира, представление о физическом вакууме предполагает возможность “движения” этой среды, но при этом принимается, что последняя состоит из виртуальных квантов (позитронное “море” Дирака, виртуальные фотоны и т.п.). Реальные же процессы взаимодействия с веществом проявляются через ее квантовые флуктуации. В настоящее время материальность вакуума подтверждена существованием таких эффектов, как, например, эффект Казимира [34], лэмбовский сдвиг энергии уровней атомов [35]. В последние годы идет подготовка к проведению экспериментов по возможному “вытягиванию” из вакуума, согласно предсказанию квантовой электродинамики, электронов и позитронов с использованием мощного сфокусированного лазерного излучения [36].

Экзотичность поведения среды, необычность уравнения состояния позволяют считать планкеонный эфир видом материи, принципиально отличающимся от известных. Условие инвариантности 4-вектора энергии-импульса по отношению к преобразованиям Лоренца позволяет для трех видов материи записать следующие соотношения:

E2 – p2c2 = m02c4, m02 > 0

E2 – p2c2 = 0, m0 = 0 (15)

К-во Просмотров: 238
Бесплатно скачать Статья: О природе фундаментальных констант