Статья: О природе фундаментальных констант
Непротиворечивым следствием из записанных соотношений является существование еще одного инварианта специальной теории относительности, соответствующего нулевому значению энергии и четвертому виду материи:
– p2 = m02c2, m02 <0 (E = 0). (16) >
Возможность деления на виды в данном случае обусловлена качественным различием массы как одного из основных свойств материи. По-видимому, первое указание на существование четырех видов материи было сделано Вигнером на основании анализа представлений группы Пуанкаре [37].
Соотношение (16), на наш взгляд, показывает возможность описания в рамках формализма теории относительности сверхсветового объекта – трансцендентного тахиона [38]. Тем самым, по-видимому, ограничивается в некоторой степени круг возможностей экспериментального поиска сверхсветовых явлений [39]. Согласно существующей точке зрения, трансцендентные тахионы “движутся” с бесконечной скоростью, не имеют энергии, но обладают ненулевым импульсом. Неупругий процесс взаимодействия, если он возможен вообще, субсветовой частицы и трансцендентного тахиона должен характеризоваться неизменной энергией системы при соответствующем перераспределении импульсов и масс. В силу дискретности спектра субсветовых частиц процесс должен быть квантовым. Отметим, что инвариантный характер соотношения (16) относительно преобразований Лоренца при нулевой энергии требует сохранения величины импульса-массы “покоя”.
Отсутствие широкого интереса к сверхсветовым движениям связано с прочно укоренившимся мнением, что скорости распространения материальных взаимодействий не могут превышать скорости света в вакууме. После создания СТО это положение рассматривалось как результат теории, как следствие преобразований Лоренца, из которых следовал вывод, что с приближением скорости тела к скорости света масса его стремится к бесконечности. Сами создатели теории относительности и ее математического формализма особо акцентировали внимание на предельном характере скорости света. А.Эйнштейн писал: “При v = V (V – скорость света. – В.К.) все движущиеся объекты, наблюдаемые из „покоящейся" системы, сплющиваются и превращаются в плоские фигуры. Для скоростей, превышающих скорость света, наши рассуждения теряют смысл...” [40]. И далее: “...скорость света в нашей теории физически играет роль бесконечно большой скорости” [41]. Позднее такое понимание значения скорости света как предельной величины подчеркивалось рядом известных физиков, в частности Л.Д.Ландау и Е.М.Лифшицем [42], В.Паули [43], А.Эддингтоном [44]. Вопрос о возможных в природе скоростях, казалось бы, решен тем самым однозначно и окончательно.
Действительно ли постулаты СТО содержат в себе, хотя бы и в неявном виде, абсолютный запрет на сверхсветовые движенияћ Теория тахионов отвечает на этот вопрос отрицательно.
При рассмотрении расширяющегося светового фронта для двух инерциальных наблюдателей, движущихся относительно друг друга с некоторой скоростью, имеем [45]
x2 + y2 + z2 = c2t2 x’2 + y’2 + z’2 = c2t’2 (17)
Далее вводится понятие интервала ds, и из инвариантности скорости света следует равенство его нулю для света во всякой другой инерциальной системе. Рассмотрение конечных интервалов позволяет сделать вывод об их равенстве для тех же наблюдателей: s = s'. Однако из соотношений (17) для инерциальных наблюдателей a priori следует возможность существования равнозначных и вещественных интервалов двух видов:
(а) s2 = x2 + y2 + z2 – c2t2 > 0 (v > c) (б) s2 = c2t2 – x2 + y2 + z2 > 0 (v
Выбор интервала (а) или (б) инвариантным образом определяет мир сверхсветовых, или субсветовых, явлений. Например, выбор интервала (б), соответствующий специальной теории относительности, позволяет сделать заключение лишь о невозможности реального перехода частицы, относящейся к классу досветовых, в класс частиц, движущихся со сверхсветовыми скоростями (аналогично тому, как досветовая частица путем количественных изменений никогда не сможет перейти к движениям со скоростью, равной скорости света). Работая с интервалом (б), специальная теория относительности не рассматривает сверхсветовые явления, соответствующие случаю (а), но (см. (16)) и не “запрещает” их: “Беспричинных невозможностей не существует” [46]. Имеется достаточно глубокий анализ физических и философских аспектов гипотезы сверхсветовых движений [47].
Фундаментальные физические константы в настоящее время – объекты пристального внимания. Это проявляется, в частности, в формулировании различного рода принципов. Например, теоретические исследования вариации фундаментальных постоянных дали представление о существовании определенных пределов, внутри которых не происходит нарушения устойчивости в структурной организации объектов нашей Вселенной. Это послужило основой для формулирования принципа “целесообразности” [48], согласно которому известные численные значения констант необходимы и достаточны для существования основных устойчивых состояний материальных объектов на всех уровнях организации неживой материи. Аналогичный по сути “антропологический принцип” [49], позволяющий интерпретировать соответствующим образом космологические совпадения, в которые входят и фундаментальные постоянные, связывает все многообразие явлений нашей Вселенной с условиями, необходимыми для существования человека.
На нынешнем этапе познания введение различных принципов, охватывающих все большую область явлений природы, служит необходимой и важной ступенью построения единой физической теории. Проведенный в данной работе анализ роли фундаментальных физических констант ћ, с, G и некоторых их комбинаций позволяет сделать следующее предположение. В нашей Вселенной все физические величины имеют свои планковские значения, которые в современных физических теориях играют, в частности, ограничивающую роль, или, в более широком смысле, роль их “узловых точек”. Появление этих величин обусловлено существованием материального планкеонного эфира, представление о котором присутствует в теориях в виде соответствующих инвариантных фундаментальных констант или их комбинаций. Данное предположение можно рассматривать как введение нового принципа – ћсG-принципа, призванного, с нашей точки зрения, сыграть важную роль в устранении трудностей, связанных с решением проблем расходимостей и сингулярностей.
Список литературы
1. Линде А.Д. Раздувающаяся Вселенная // Успехи физ. наук. 1984. Т. 144, вып. 2.
2. Зельдович Я.Б. Тяготение, заряды, космология и когерентность // Успехи физ. наук. 1977. Т. 123, вып. 3; Фролов В.П. Черные дыры и квантовые процессы в них // Успехи физ. наук. 1976. Т. 118, вып. 3.
3. Мизнер Ч., Тори К., Уилер Дж. Гравитация. Т.3. М., 1977; Осборн М. Квантово-теоретические ограничения на общую теорию относительности // Эйнштейновский сборник. 1982 – 1983. М., 1986; Станюкович К.П. Гравитационное поле и элементарные частицы. М., 1965.
4. Уилер Дж. Предвидение Эйнштейна. М., 1970. С. 47.
5. Ландау Л., Померанчук И. О точечном взаимодействии в квантовой электродинамике // Докл. АН СССР. 1955. Т. 102, № 3. С. 489.
6. Берестецкий В.Б., Лифшиц Е.М., Питаевский А.П. Квантовая электродинамика. М., 1980. С. 19.
7. Enz Ch. Le role de l'espace et le probleme de localisation en physique moderne, vus en particulier par Wolfgang Pauli // Arch. sci. 1986. V. 39, N 2.
8. Горелик Г.E. Первые шаги квантовой гравитации и планковские величины // Эйнштейновский сборник. 1978 – 1979. М., 1983.
9. Дибай Э.А., Каплан С.А. Размерности и подобие астрофизических величин. М., 1976. С. 96–98.
10. Бисноватый-Коган Г.С., Новиков И.Д. Космология при ненулевой массе покоя нейтрино // Астрон. журн. 1980. Т. 57, вып. 5. С. 900.
11. Козик В.С., Любимов В.А., Новиков E.Г. и др. Об оценке массы ve по спектру b-распада трития в валине // Ядер. физика. 1980. Т. 32, вып. 1(7). С. 301 – 303.
12. Марков М.А. Предельная плотность материи как универсальный закон природы // Письма в ЖЭТФ. 1982. Т. 36, вып. 6.
13. Сахаров А.Д. О максимальной температуре теплового излучения // Письма в ЖЭТФ. 1966. Т. 3, вып. 11.
14. Brandt Н.E. Maximal proper acceleration relative to the vacuum // Lettere al Nuovo Cimento. 1983. V. 38, N 15; Caianiello E.R. Is there a maximal accelerationћ // Ibid. 1981. V. 32, N 3; Caianiello E.R., Landi G. Maximal acceleration and Sakharov's limiting temperature // Ibid.– 1985. V. 42, N 2; Massa С. Forretti's limit and Sakharov's temperature // Ibid. 1985. V. 44, N 8,
15. Гинзбург В.Л., Фролов В.П. О возбуждении и излучении “детектора”, движущегося в вакууме с ускорением или равномерно движущегося со сверхсветовой скоростью в среде // Письма в ЖЭТФ. 1986. Т. 43, вып. 6; Зельдович Я.Б., Рожанский Л.В., Старобинский А.А. Излучение ускоренного электрона // Там же. 1986. Т. 43, вып. 9; Unruh W.G. Notes on black-hole evaporation // Phys. Rev. 1976. V. 14, N 4.
16. Марков M.А. Элементарные частицы максимально больших масс (кварки, максимоны) // ЖЭТФ. 1966. Т. 51, вып. 3(9).