Статья: Образование сетки при радиационной трехмерной сополимеризации А и В-дибутил-бис-малеинаттриэтиленгликоля со стиролом
ОБРАЗОВАНИЕ СЕТКИ ПРИ РАДИАЦИОННОЙ ТРЕХМЕРНОЙ СОПОЛИМЕРИЗАЦИИ α, ω-ДИБУТИЛ-бис -МАЛЕИНАТТРИЭТИЛЕНГЛИКОЛЯ СО СТИРОЛОМ
Образование сетки при трехмерной гомо- или сополимеризации бифункциональных мономеров в отличие от сетки физических узлов, получающейся при полимеризации в массе монофункциональных мономеров, проходит, как правило, через первичную стадию формирования заготовок или зародышей [1] в виде частиц микрогеля. Необходимые условия для образования растворимого продукта (р*-полимера) создавались при полимеризации в присутствии передатчиков цепи [2], в окислительной полимеризации [3], при низкотемпературной радикальной сополимеризации [4] олигоэфирметакрилатов.
Одновременное появление растворимого сополимера и макрогеля мы наблюдали при сравнительно малых степенях конверсии в реакции сополимеризации в массе олигоэфирметакрилата ТГМ-3 со стиролом [5].
В настоящей работе изучен процесс сополимеризации, со-дибутил-бис-малеинаттриэтиленгликоля (дималеинат) со стиролом, инициированный f-излучением 60 Со. Известно, что по радикальному механизму эфиры малеиновой или фумаровой кислот не гомополимеризуются [6], но они способны к сополимеризации, например, с винильными мономерами.
Дималеинат был синтезирован в две стадии: на первой стадии по известной методике [7] получали монобутилмалеинат. Эквимольную смесь малеинового ангидрида и н-бутилового спирта нагревали, перемешивая 90 мин при 80°. Выделенный в итоге монобутилмалеинат имел показатель преломления га20 1,4560 (теоретическое значение 1,4570), кислотное число 367 мг КОН/г (теоретическое значение 327 мг КОН/г). На второй стадии проводили реакцию конденсации монобутилмалеината с триэтилен-гликолем. 0,9 моля (155 г) монобутилмалеината, 0,42 моля (64 г) триэтиленгликоля, 4 г толуолсулъфокислоты, 0,4 г гидрохинона и 200 мл толуола нагревали, перемешивая в колбе с насадкой Дина — Старка до прекращения выделения воды. После окончания реакции полученный раствор олигомера в толуоле промывали содово-солевыми растворами до нейтральной реакции, сушили над MgSО4 и отгоняли толуол. Итоговый продукт реакции имел следующие характеристики: эфирное число 479 мг КОН/г (теоретическое значение 491 мг КОН/г), кислотное число 13,4 мг КОН/г и гидроксильное число ММ дималеината, рассчитанная по ИК-спектрам (методика будет подробнее изложена далее), составляла 460 (по интенсивности полосы 1730 см, соответствующей карбонилу) и 508 (по интенсивности полосы 1645 см-1 , соответствующей валентным колебаниям малеинатной группы). Независимо измеренная методом эбуллиоскопии ММ оказалась равной 496±10. Теоретическая ММ олигомера составляла 458, так что синтезированное соединение можно считать (с хорошей точностью) индивидуальным веществом — дибутиловым эфиром дималеината три-этиленгликоля с химической формулой
Сополимеризацию проводили в вакуумированных термостатируемых ампулах при 30°. Весовое содержание стирола в исходной смеси жо=0,30 (или 0,654 молей). Интенсивность γ-излучения 650рад/с. Содержимое ампул, облученных за контролируемое время определенной дозой, помещали в растворитель (обычно метилэтилкетон (МЭК)), отфильтровывали нерастворимый гель, а из фильтрата осаждали метанолом растворимый сополимер. Осадок экстрагировали в аппарате Сокслета. Последующим взвешиванием высушенных образцов определяли раздельно конверсию композиции в растворимый сополимер Wv и макрогель.
На первом этапе исследования представлялось необходимым установить химическое строение растворимого сополимера, определить его ММ и содержание микрогеля в сополимере, а также характер изменения этих параметров при увеличении степени конверсии.
С этой целью использовали ИК-спектроскопию и светорассеяние. ИК-спектры поглощения растворов изучаемых образцов в хлороформе (он не проявляется в области поглощения аналитических полос) записывали на двулучевом спектрофотометре «Specord Ш-75» (ГДР) в неразборных кюветах. Толщину поглощающего слоя варьировали от 0,0035 до 0,0120 см (материал окошек КВг). Спектрограммы обсчитывали методом базовой линии [8]. Предварительно определяли коэффициенты погашения выбранных аналитических полос. В качестве модельных соединений использовали дистирол, диоктиловый эфир малеиновой кислоты и диметиловый эфир малеиновой кислоты. Рабочий диапазон концентраций дистирола в хлороформе 0,5—0,6 моль/л, для эфиров малеиновой кислоты — 0,15—0,6 моль/л.
ИК-спектр дистирола идентичен спектру ПС. Для количественной оценки содержания стирольных фрагментов в сополимерах была выбрана полоса поглощения при v=1500 см-1 с коэффициентом погашения 113±10 л/моль-см. Из спектрограмм эфиров малеиновой кислоты получили значение коэффициентов погашения е=89,7± ±2,7 л/моль-см для v=1645 см-1 и 8=372,3±4,5 л/моль-см для v=1730 см-1 . Ошибка в определении не превышает 8%.
Анализ спектрограмм растворимых сополимеров, образовавшихся на первых стадиях сополимеризации, показывает, что процесс идет с раскрытием двойных связей стирола (уменьшение интенсивности поглощения ниже предела разрешения в рабочем диапазоне концентраций на частоте 913 см-1 , обусловленной деформационными колебаниями СН при двойной связи в стироле). Также существенно уменьшается поглощение на частоте 980 см-1 , что связано с вхождением малеинатных групп в цепь сополимера, где, однако, остается значительное количество непрореагировавших двойных связей дималеината, оцененное по величине поглощения 1645 см-1 .
Состав сополимера был определен еще одним независимым способом. Образец II гидролизовали по методике [9]. В продукте гидролиза кислотные группы алкилированием превратили в сложноэфирные. Методом УФ-спектроскопии [10] измерили состав полученного таким способом сополимера стирола с диметиловым эфиром янтарной кислоты. Содержание стирола в этом сополимере оказалось 71,1 вес.%, что очень близко к значению 71,6 вес.%, отвечающему составу исходного сополимера с мольным отношением стирола к дималеинату равным 3,5 (по ИК-спектру).
Зная мольный состав сополимера п при малых конверсиях и начальной концентрации сомономеров хм °, в предположении, что активность малеинат-ной компоненты г2 =0, по формуле бинарной сополимеризации [11] можно оценить активность стирола в этой реакции: n=r1 xM °+l; га=3,5; хм °=1,89; г,=1,35. Данные по инкременту показателя преломления растворимых сополимеров (таблица) также свидетельствуют о том, что их состав мало меняется при изменении конверсии. Чтобы объяснить этот факт, мы рассчитали по формулам бинарной сополимеризации, как изменяется состав сополимера в нашем случае с изменением конверсии. Упрощая расчетприняли, что г2 =0 и г,=1. Мольная степень конверсии
где [S]0 и [Мо] — мольные концентрации стирола и дималеината в исходной смеси, a [S] Р и [М] р — в сополимере, связанная с мгновенным мольным составом сополимера
и с мольным содержанием. При этом
Если поставить в формулу для Fs значения г,=1 и г2 =0, то получим Fs =l/(2-/s). Тогда
Как видно, в этой системе даже мгновенный состав сополимера весьма слабо меняется в интересующей нас области конверсии. Очевидно, что средний состав изменяется еще меньше.
Светорассеяние от растворов сополимеров измеряли на фотогониодиф-фузиометре «Sofica». Растворы обеспыливали фильтрованием через фильтры «Santorius» (размер пор 0,45 мкм). В качестве растворителя был выбран МЭК по следующим соображениям. Как известно [13], измеренная в одном растворителе молекулярная масса сополимера Мк не является его истинной средневесовой молекулярной массой Ма , а определяется также параметрами композиционной неоднородности Р и Qи оптическим фактором p=(vA —vB )/v0 , где v0 , vA , vB — инкременты показателя преломления в данном растворителе сополимера в целом и его компонентов А и В соответственно.
В МЭК значение v0 для всех измеренных образцов было максимально по сравнению с v в других растворителях и равно «0,163 см3 /г. Соответствующая оценка показывает, что при такой величине v0 , vA —vB ~0,l и ji«0,6 даже при предельной композиционной неоднородности ошибка в определении ММ не превышает 3% [14] и Mk »Mw . Одновременно с Мю из графиков Цимма по стандартной методике рассчитывали УЛД среднеквадратичный радиус инерции сополимерных клубков.
В таблице в первой ее половине представлены полученные таким образом молекулярные характеристики ряда образцов вместе с условиями их синтеза. Неожиданными оказались размеры макромолекул в растворе, а именно УЛ1 2 =0,15—0,2 мкм у образцов с АГ=5*. Например, для макромолекул ПС с молекулярной массой 1,6-10в|| Лг 2 ~0,05 мкм в термодинамически хороших растворителях [15] (в работе приводятся значения hz =QRz 2 для гауссовых клубков). Весьма завышенные размеры клубков указывают на наличие микрогеля в образцах, даже незначительная доля которого сильно искажает индикатрису рассеяния света. Видно, что, хотя содержание микрогеля в образцах сильно возрастает при увеличении конверсии, оно не превышает 2% и не вносит существенного вклада в процесс образования макросетки. Кстати, и в образце IV, состоящем из растворимого сополимера и макрогеля, значение относится только к растворимой части, т.е. С ростом степени превращения заметно уменьшается М1а микрогеля. Скорее всего, слишком крупные частички образующиеся в результате роста или коагуляции более мелких, отфильтровываются и теряются в незаметных для гравиметрического анализа количествах. Труднообъяснимым оказалось монотонное возрастание молекулярной массы M2 w.
Следует заметить, что метод Ланге требует получения индикатрисы рассеяния с высокой степенью точности, причем в диапазоне углов, не достижимых при измерениях на приборе «Sofica». К тому же сама индикатриса искажается за счет полидисперсности, разветвленности и объемных эффектов [18]. С целью проверки правильности расчета были сняты седиментационные диаграммы образцов I—III в к-хлорбутане (концентрация растворов 0,07 г/дл) при 20° и скорости вращения ротора 50 000 об/ мин на аналитической ультрацентрифуге «МОМ 3170» с помощью абсорбционной оптики в ультрафиолетовом свете. Суммарный коэффициент поглощения образцов сополимера стирола с дималеинатом для Х=0,26 мкм был равен 1,5 (2,2 для ПС и 1,0 для дималеинатной компоненты; весовое содержание стирольных звеньев а=0,43). Фотографии фотометрировали на двулучевом микрофотометре ИФО-451. Типичная фотометрограмма приведена на рис. 1. Расчет интегральных кривых распределения W(S) по коэффициентам седиментации dSпроводили с учетом диффузии [19] и в предположении, что da/dS= 0. Это необязательное условие приходится вводить, чтобы получить W(S) из диаграмм, снятых с помощью одной оптической схемы регистрации седиментирующей границы [20]. Оправданием такого допущения служит тот факт, что изучаемые образцы получены в довольно узком интервале суммарной конверсии сомономеров Чг р = =7,8—17,9%. Как видно из рис. 2, зависимости W(S) для трех образцов с хорошей точностью ложатся на одну кривую, т. е. средние молекулярные массы их одинаковы. На фотометрограммах рис. 1, соответствующих временам опыта сразу после достижения скорости вращения 50 000 об/мин, всегда регистрировали в придонной области кюветы избыточное над уровнем плато поглощение света, площадь которого составляет 1—2% от площади седиментирующей границы. По-видимому, эта осажденная часть образца является микрогелем.
В свете полученных данных следует сделать вывод, что применение метода Ланге в нашем случае приводит к некорректным результатам. Вплоть до конверсии ~18% в системе накапливается только растворимый сополимер постоянной ММ, причем одна из двух двойных концевых связей дималеината в нем не «задействована». Этому обстоятельству способствует малая величина константы взаимного присоединения малеинатной компоненты. К тому же эффективная константа присоединения «подвешенных» малеинатных связей к стиролу, по-видимому, еще меньше, чем у свободной молекулы дималеината. «Перекачка» растворимой части в макрогель носит критический характер, как видно из сравнения значений ¥р и Wr образцов III и IV. В довольно узком интервале времени реакции и полимеризационного инкремента почти весь образовавшийся до этого растворимый продукт трансформируется в трехмерный гель. В дальнейшем рост массы сеточного материала подавляет реакцию образования растворимого сополимера.
Эти данные позволяют представить следующий механизм гелеобразо-вания в нашей и подобных системах. Накопление в реакционном объеме растворимого полимерного материала при некоторой специфической для данной системы степени конверсии приводит, по-видимому, к резкому изменению физического состояния системы, напоминающему фазовое расслоение, скорее всего, на микроуровне. Вследствие этого наблюдается сильный концентрационный эффект увеличения вероятности эффективного столкновения «подвешенных» двойных связей с радикалами соседних макромолекул. Образуются агрегаты трехмерной сетки, в которых в дальнейшем преимущественно и идет реакция. Часть растворимого полимерного материала, оставшаяся в растворе, довольно быстро присоединяется к гелю или физически иммобилизуется сеткой, делая невозможным его экстракцию. Следует отметить, что по предварительным данным точка гелеобразования зависит не только от концентрации полимера в системе, но и от скорости полимеризации, т. е. конкурируют процессы образования растворимого полимера и выделения геля.
Рассмотренный здесь механизм гелеобразования является альтернатив-
--> ЧИТАТЬ ПОЛНОСТЬЮ <--