Статья: Основные положения моделирования систем обеспечения качества управления в экономике
удобной в управлении и обращении (общение с ней должно быть легким);
полной с точки зрения возможностей решения главных задач;
адаптивной (легкий переход к другим модификациям и обновление данных);
допускающей постепенные изменения (будучи сначала простой, она может во взаимодействии с пользователем становиться все более сложной).
Необходимость выполнения большинства этих требований очевидна, вместе с тем следует учитывать, что они часто противоречат друг другу. Так, требование полноты может приходить в противоречие с простотой и целенаправленностью модели. На практике прибегают к разумному компромиссу в зависимости от целей решаемой задачи.
В числе отмеченных требований, одним из наиболее важных требований является свойство целенаправленности модели. В связи с этим следует обратить пристальное внимание на цели и задачи, которые должна решать данная система, а также на соответствие модели и исходного объекта.
Перечисленные выше критерии относятся к моделям произвольного вида. Основными требованиями, предъявляемыми к математическим моделям, являются адекватность, универсальность, экономичность. Первое из них отражает степень совпадения предсказанных с помощью модели значений параметров объекта с истинными значениями этих параметров и хорошо связывается с обеспечением приемлемой точности.
Универсальность определяется применимостью модели к анализу многочисленных однотипных объектов для многих режимов их работы.
Основоположником имитационного динамического моделирования в экономике по праву считается Дж. Форрестер [96,97,98]. В этих монографиях он не только разработал технологию построения имитационных моделей (кибернетика предприятия), но и сумел реализовать их на ЭВМ, создав специальный язык динамического программирования DYNAMO. В дальнейшем технология Дж. Форрестера применялась и применяется при решении задач управления предприятием, отраслью и т.п. За тридцать лет, прошедших с момента создания имитационного динамического моделирования оно стало необходимым инструментом в экономике и экологии.
Сущность метода имитационного динамического моделирования состоит в следующем: модель представляет собой систему уравнений, связывающих между собой основные выбранные нами основные переменные модели, называемые уровнями модели и темпами (характеризующими скорости изменения уровней модели с течением времени). Процесс моделирования в этом случае состоит в решении этой системы уравнений на компьютере. При использовании метода имитационного динамического моделирования приоритетной задачей является разработка модели, установление связей между переменными и составление уравнений функционирования этой модели.
Согласно определению Дж. Форрестера [96]: Имитационное моделирование – это процесс создания модели реальной системы и проведение экспериментов на этой модели с целью понять поведение этой системы и оценить различные стратегии, обеспечивающие ее функционирование. Процесс разработки имитационной модели включает в себя несколько этапов:
определение проблемы;
определение факторов, которые взаимодействуют при возникновении наблюдаемых симптомов;
выявление причинно-следственных связей;
формулировку общих правил, по возможности объясняющих, каким образом на основе имеющихся потоков информации
построение математической модели, включающей правила принятия решений, источники информации и взаимодействие компонентов системы;
проверка адекватности модели реальному объекту (в нашем случае массовой физической культуре в муниципальном образовании);перестройку в рамках модели организационного взаимодействия и правил принятия решений (в нашем случае, определенных педагогических воздействий) для достижения желаемого результата.
Процедура построения имитационной модели представлена на Рис.1.4
Алгоритм имитационного моделирования схематически можно представить следующим образом:
1. Постановка задачи и определение типа модели.
На этом этапе главным является способность формулировать проблему. Постановка задачи, как правило, оказывается непрерывным процессом, не прекращающимся в ходе исследования. Новая информация, касающаяся ограничений задач и возможных альтернативных вариантов, периодически используется для обновления формулировки и постановки задачи.
2. Формулирование модели.
3. Проверка модели.
Здесь важна “правдивость результатов”, функциональная полезность модели, а не доказательство справедливости самой структуры модели. Необходимо также установить исходные предположения, на основе которых строилась данная модель. При оценке адекватности модели необходимо выполнить серию проверок. Например, следует убедиться в отсутствии абсурдных ответов, если параметры модели будут принимать предельные значения. Используются также такие методы оценки адекватности, как проверка исходных предположений и проверка преобразований информации от входа к выходу.
4. Экспериментирование и анализ чувствительности.
Так как практически в любой модели есть параметры, задаваемые с невысокой точностью, важно определить степень чувствительности результатов к их вариации. При сильном влиянии погрешности исходных данных на результат может быть поставлена задача определения исходных данных с более высокой точностью.
5. Реализация замысла и документирование.
Сформулированные выше положения носят самый общий характер. При разработке каждой конкретной модели следует учитывать высокую степень индивидуальности процесса моделирования. По мнению Р. Шеннона [103], “...моделирование — это искусство, а не наука. Не существует твердых и легких правил относительно того, чего не следует или что следует делать для построения модели”.