Статья: Основы безвихревой электродинамики Потенциальное магнитное поле
На рисунках 3,4 показаны схемы опытов.
R (МТЭ)
(НДТ)
- i
IIIIIIt
Рис.3
R
(НДТ)
- i
IIIIIIt
Рис.4
Стабилитрон размещался в латунной экранирующей втулке. С целью разделения во времени магнитного охлаждения кристалла стабилитрона и его нагрева джоулевым теплом (НДТ) термозащитный кожух выполнен из алебастра и имеет массу, равную 0,5 кг.
Свободно пропуская магнитное поле, он в значительной мере аккумулирует в себе первоначальный слабый поток джоулева тепла, задерживая на некоторое время его влияние на стабилитрон.
В начале каждого опыта, в отсутствии исследуемого поля, оценивалась теплообменная ситуация между стабилитроном и окружающим пространством (зона I графиков).
Горизонтальная ломанная линия на первом участке графика указывает на неизменность во времени температуры стабилитрона.
В зоне II подъём ломанной линии графика над горизонтальной средней указывает на увеличение омического сопротивления стабилитрона под воздействием магнитного охлаждения и этот факт является опытным доказательством образования центрально-
симметричными токами потенциального магнитного поля. Иного объяснения наблюдаемому факту автор не находит.
В ряде опытов экранирующая втулка с стабилитроном размещалась внутри толстостенной стальной втулки (d = 1, 4 см, D = 3, 2 см., ℓ = 6,5 см.). Однако проявление магнито-термического эффекта по-прежнему имело место, что подтверждает естественное
предположение об отсутствии взаимодействия потенциального магнитного поля с спиновыми магнитными моментами ферромагнитного материала. Второй опытный факт является весомым дополнением к искомому доказательству.
В зоне III проявлялось преимущественное влияние джоулева тепла, образуемого токами в рамках. Ломанная линия графика уходит вниз вследствие нагревания экранирующей втулки и стабилитрона тепловым потоком, преодолевшим тепловую защиту.
В экспериментах с однонаправленными стационарными токами в паре рамок (Рис.4) магнитное охлаждение заметным образом не проявлялось.
Опытная регистрация эффекта переменного потенциального магнитного поля.
Из математической модели безвихревой электродинамики [ 2 ] имеем следующую формулу для вычисления ЭДС, образуемой в проводнике посредством бесциркуляционного магнитного поля
ε, (2)
которая упрощается в приближении однородности поля
ε = -- d/dtℓІ (3)
По сравнению с вихревой электродинамикой в (3) вместо площади поверхности отображается квадрат протяжённости проводника.
Мощность потерь электромагнитной энергии поперечной ЭМВ в проводнике пропорциональна площади его поверхности, ортогональной вектору потока плотности электромагнитной энергии