Статья: Проблема иррациональных чисел

Проблема иррациональности впервые обнаружена в геометрии при извлечении корня. Она известна еще в эпоху “античности”, связываемую с именем Пифагора.

Выявленное логическое противоречие состоит в следующем. С одной стороны имеется доказательство того, что все точки на прямой являются целыми или дробными, т.е. “рациональными” числами.

Это доказательство таково.

Берется отрезок прямой с координатами его концов 0 и 1. Обе эти координаты являются целыми числами.

Отрезок делится пополам и рассматриваются каждый из вновь полученных отрезков.

Концы этих отрезков имеют координаты 0 и 0,5 или 0,5 и 1, являющиеся целыми или дробными, т.е. “рациональными” числами.

Продолжается повторное разбиение пополам, сближающее края последующих отрезков при их сохранении каждый раз заведомо рациональными числами.

В пределе, при бесконечном разбиении, края отрезков сливаются в точку, оставаясь при этом рациональными числами.

Логический вывод гласит, что исходный отрезок оказывается заполненным одними лишь рациональными числами, иными словами ни для какой "иррациональности" места не остается.

Другое доказательство наоборот приводит к тому, что некоторые точки на прямой не могут быть заданы ни целыми, ни дробными числами, т.е. не являются рациональными.

Это доказательство таково: берется равнобедренный прямоугольный треугольник с длиной каждого катета равной 1. Согласно теореме Пифагора длина гипотенузы при этом составляет . Это не может быть ни целым числом, ни несократимой дробью , поскольку в этом случае a2 = 2b2. Следовательно, a есть четное число представимое как a = 2k. Но тогда a2=(2k)2=4k2=2b2. А значит и b2 = 2k2, т.е. b – тоже четное число. Получаем логическое противоречие: с одной стороны дробь должна быть несократима (в противном случае ее можно сократить на общий множитель), с другой же стороны обе ее части a и b - четные числа, т.е. имеют общий множитель 2, а значит, дробь является сократимой.

Итак, первому логически не противоречивому доказательству противостоит второе - логически противоречивое доказательство.

Поскольку первое доказательство не содержит логического противоречия, оно не может вызывать никаких сомнений и должно считаться безусловно верным.

Второе же доказательство напротив содержит внутри себя логическое противоречие. А значит, во-первых, оно ни в коем случае не может служить опровержением первого - логически непротиворечивого доказательства. И, во-вторых, именно оно, как содержащее внутри себя логическое противоречие, должно считаться крайне сомнительным и требующим дополнительного рассмотрения.

Предлагаемое рассмотрение таково.

Прежде всего, что означает это приравнивание длины катетов числу 1? А вот что: это значит, что оба катета измерены с помощью некоторого эталона, и что результат этого измерения равен единице. Естественный вопрос для любого измерения: с какой точностью? Ответ такой: при измерении любым эталоном абсолютная погрешность измерения равна самому эталону, а точность измерения, определяется отношением абсолютной погрешности (величины эталона) к самой измеряемой величине - относительной погрешностью.

Величина эталона относительно себя самой равна единице с бесконечной степенью точности, что может быть выражено в виде десятичной дроби: э =1,(0). А вот величины обоих катетов а и b, измеренных таким эталоном должны выглядеть так: а =1= 1, b =1= 1, где э – величина эталона.

В данном случае получим: абсолютная погрешность , , a = 11, b =11. А относительная погрешность, определяющая точность каждого измерения, равна соответственно

a(%) = и .

И даже если принять в качестве эталона один из катетов, например, а, что означает a(%) = 0,(0), т.е. бесконечную точность его измерений и равенства нулю его относительной погрешности, то все равно относительная погрешность измерения второго катета останется 100%.

Вот что означает на практике это небрежное брошенное условие равенства единице длин обоих катетов.

И что мы получим при измерении гипотенузы таким эталоном э?

Вариантов ответа два: с = 1 или с =.

В первом случае погрешность измерения гипотенузы равна 100%, как и в случае катета, а во втором случае – 50%. Ясно, что второй ответ более точен, хотя тоже не очень хорош.

Что мы теперь имеем по теореме Пифагора? Катеты равны 11, т.е. их можно считать равными 1 или 2, а гипотенуза и вовсе может быть равной 1 или 2, или даже 3. Причем каждый из этих ответов по-своему верен с известной степенью точности.

Но в то же время 12+1212 или 22 и уж тем более 32.

И второй возможный вариант тоже дает: 22+2212 или 22 или 32.

И даже принятие в качестве эталона одного из катетов тоже дает: 12+2212 или 22, или 32. Другими словами требуемое равенство не достигается ни при каком варианте таких измерений.

Точность повышается при уменьшении величины эталона э, например, в 10 раз.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 132
Бесплатно скачать Статья: Проблема иррациональных чисел