Статья: Проблема повышения биодоступности лекарственных средств методами нанофармакологии. Фармакокинетика липосомальных препаратов
Проблема повышения биодоступности лекарственных средств методами нанофармакологии: Фармакокинетика липосомальных препаратов.
А.К. Сариев, Д.А. Абаимов, Р.Д. Сейфулла
Резюме:
В представленной работе систематизируются существующие представления относительно применения таких нанофармакологических носителей, как липосомы, с целью преодоления проблем, связанных с низкой фармакокинетической эффективностью различных лекарственных средств. Оценивается роль липосомальных контейнеров в создании новых лекарственных форм современных препаратов, полученных методами биотехнологии, в том числе фармакологически активных пептидов. Обсуждаются современные подходы для повышения эффективности липосомального транспорта веществ. В обзорной части приводятся современные примеры создания новых нанофармакологических препаратов, превосходящих по своим фармакокинетическим характеристикам их классические аналоги.
Ключевые слова: липосомы, нанофармакология, гистогематические барьеры, биодоступность, фармакокинетика.
Липосомы - одни из наиболее исследованных наночасти, которые рассматриваются как современные и эффективные средства доставки различных лекарственных средств, которые широко применяются в клинической практике. Учитывая особенности транспорта, транслокацию через гистогематические барьеры, клеточные мембраны и метаболические трансформации, липосомальные фармакологические препараты обладают уникальными свойствами, связанными, прежде всего, с особенностями их фармакокинетики.
Применение липосом как средств доставки, позволяет в некоторых случаях существенно увеличить биодоступность, в других случаях - напротив, позволяет предотвратить чрезмерное увеличение концентрации препарата в крови, тем самым снижая опасность передозировки и уменьшая побочные эффект. Хотелось бы отметить, что на сегодняшний день наиболее значимым способом оценки эффективности новых липосомальных лекарственных форм является существующий арсенал фармакокинетических методов, то есть различных современных методов оценки биодоступности веществ, о чем подробно будет сказано ниже.
Особую роль липосомы стали играть в связи с появлением нового поколения препаратов, получаемых методами биотехнологии, таких как белковые и пептидные препараты, а также препараты на основе нуклеиновых кислот. В связи с чувствительностью указанных препаратов к химическому и ферментативному гидролизу, и к тому же плохим клеточным поглощением большие сложности возникают при перроральном введении данных препаратов. Среди возможных стратегий преодоления данных сложностей главное место занимает подход с применением микро - и наночастиц, которые улучшают поглощение и транспортировку препаратов вводимых перрорально. Разрабатываются липосомальные формы, высвобождающие пептидные препараты только в толстом кишечнике, где протеолитическая активность достаточно низка. Хороший эффект обеспечивают твердолипидные носители. Твердолипидные наночастицы обладают такими преимуществами, как модулируемое высвобождение препарата, улучшенная биодоступность, защита химически лабильных молекул, таких как ретинол и пептиды от биодеградации. На основе липосом созданы системы доставки различных факторов роста, например человеческого эпидермального фактора роста rhEGF. Данный пептид хорошо инкапсулируется в мультивезикулярные липосомы (60% загрузки при концентрации 5 мг/мл) и демонстрирует хороший терапевтический эффект при язве желудка. На крысах показано, что пептидный препарат при перроральном введении демонстрирует эффективность сравнимую с циметидином. Разработана липосомальная форма для перрорального введения рекомбинантного человеческого эритропоэтина, которая в эксперименте на крысах демонстрирует биодоступность до 31%.
Новые перспективы открывают различные нанофармакологические формы инсулина. Для разработки перроральных форм инсулина применяются лецитин-модифицированные липосомы, которые в эксперименте на мышах-диабетиках демонстрируют относительную биодоступность до 9,12% по сравнению с субкутантной инъекцией инсулина. Разработаны твердолипидные наночастицы для доставки инсулина перроральным путем. Такие частицы загружаются не только инсулином, а также специальным клеточно-проникающим пептидом (СPP) октааргинином. Данная добавка обеспечивает относительную биодоступность инсулина 10,39%. Таким образом, твердолипидные наночастицы с октааргинином являются многообещающими транспортными формами для перрорального инсулина. Высокую эффективность демонстрируют также и липосомы инсулина с комбинированной двойной оболочкой, содержащей хитозан и коньюгаты хитозана с ЭДТА. Данная форма при перроральном ведении обладала биодоступностью 17,02%, в то время, как субкутантная инъекция инсулина обеспечивала только 8,91% биодоступности. Другой группой исследователей было показано, что липосомальная загрузка инсулина получается эффективнее при инкапсуляции инсулина в альгинатно-хитозановые капсулы. Данная форма инсулина легко преодолевает кислую среду желудка и высвобождает инсулин в нейтральной среде кишечника, что увеличивает поглощение инсулина и повышает его биодоступность. Таким образом, липосомальная упаковка препаратов позволяет преодолевать агрессивную среду желудка и облегчает проникновение вещества через интестинальный эпителий и лимфатическую систему. Многообещающие предклинические результаты были достигнуты на таких препаратах, как паклитаксел, инсулин, кальцитонин и циклоспорин. Внимание сосредоточено на таких мукоадгезивных переносчиках, как хитозан, который улучшает контакт между препаратами и клетками кишечника, тем самым облегчая абсорбцию. Добавление таких лигандов, как лецитин улучшает кишечное поглощение препаратов посредством специфического связывания с кишечным клеточным переносчиком карбогидратов. Широкие перспективы для улучшения фармакокинетических характеристик препаратов открываются при применении липосом активизированных добавлением холестерина и солей желчи. Так для малорастворимого в воде препарата фенофибрата было показано, что применение его в форме липосом изготовленных на основе фосфолипидов сои с добавлением холестерина и солей желчи обеспечивало увеличение его биодоступности в 5 и 3 раза соответственно, по сравнению с его микронизированной коммерческой формой. Нужно отметить, что липосомы с присадкой из солей желчи вызывали увеличение биодоступности препарата почти двукратно превосходящее таковое для липосомального фенофибрата с холестериновой присадкой, что говорит о том, что липосомы, содержащие соли желчи, могут быть использованы для увеличения перроральной биодоступности для слаборастворимых в воде препаратов. Ведутся исследования по получению и внедрению в практику липосомальных форм противовирусных препаратов с низкой перроральной биодоступностью - например ацикловира. Применение ниосомальной липосомальной формы данного препарата в опыте на кроликах обеспечивает двукратное увеличение его биодоступности и продолжительности его периода полужизни в организме по сравнению со свободным препаратом.
Важную роль нанофармакологические средства транспортировки препаратов играют в фармакологии новых антиоксидантных средств. Антиокислительные агенты чаще всего имеют низкую растворимость, плохую химическую стабильность и, в этой связи, быстро разрушаются в пищеварительном тракте. В последнее время липосомы и наночастицы позволили существенно продвинуться в направлении преодоления этих сложностей. Разработаны липосомальные формы супероксиддисмутазы, ликопена, коэнзима Q10 , кверцетина и многих других антиоксидантов. Для доставки противоопухолевых препаратов в настоящее время стали широко применяться липосомы с полимерной сердцевиной (ядром). Применение липосом с полимерной сердцевиной позволяет уменьшить деградацию липосом в пищеварительном тракте. Разработаны липосомальные формы для многих противоопухолевых препаратов, в том числе для винкристина, 5-фтороурацила и метотрексата. В экспериментах на культуре клеток Caco-2 было показано, что липосомы значительно увеличивают проницаемость данных веществ через плазматические мембраны клеток.
Существенно повышает эффективность липосомального транспорта применение липосом ассоциированных с молекулами фолиевой кислоты. При введении цефотаксима в форме фолат-асоциированных липосом вызывало существенное увеличение пиковой концентрации препарата в плазме (Сmax ) по сравнению с липосомальной формой без фолиевой кислоты (в 1,4-2 раза). Таким образом фолиевая кислота может облегчать поглощение липосомальных форм препаратов. Другой группой ученых липосомы модифицированные фолиевой кислотой применялись для доставки гликопептида с низкой кишечной проницаемостью - ванкомицина. В эксперименте проведенном на клетках Caco-2 было показано, что липосомы с добавлением фолиевой кислоты приблизительно в 6 раз активнее поглощаются данными клетками. Применение фолат-липосомальной формы ванкомицина на крысах при перроральном введении демонстрирует 4-х кратное повышение относительной биодоступности по сравнению с классическими липосомами и 12-кратное относительно простого раствора ванкомицина. Более эффективные фармакокинетические свойства липосом с фолиевой кислотой связано с тем, что фолиевая кислота способна связываться с рецепторами на поверхности клеток ЖКТ с последующим рецептор-зависимым эндоцитозом липосомального ванкомицина энтероцитами.
В последние годы произошли значительные модификации мембран липосом, которые позволили избегать встречи с фагоцитами, стабилизировать их мембраны, находить клетки-мишени с помощью молекулярного компаса (антител и других) и, как следствие этого - осуществлять направленный транспорт лекарств (DrugDelivery).
Таблица. Классификация и преимущества различных модификаций липосом для направленного транспорта лекарственных веществ.
Способ введения |
Классификация липосом | Механизм фармакокинетического эффекта |
Трансдермальный | Ультрагибкие липосомы | Проникают в поры значительно меньшего диаметра, чем они сами |
Интраназальный | Заряженные ультрагибкие липосомы | Поверхностный заряд повышает мукоадгезивные свойства липосом, что делает возможным прямую абсорбцию липосом через слизистую носа. |
Перроральный | 1. Хитозан-содержащие липосомы | Легче проникают через мукополисахаридную слизь, выстилающую пищеварительный тракт |
2. Липосомы, ассоциированные с фолиевой кислотой | Эффективно проникают в системный кровоток, посредством механизма активного клеточного транспорта и лиганд-зависимого фагоцитоза клеток кишечника. | |
3. Липосомы с полимерной сердцевиной | Наличие полимерного кора позволяет в разы снизить ферментативную биодеградацию липосом в пищеварительном тракте. | |
4. Липосомы, содержащие лецитин | Транспортируются через мембраны энтероцитов клеточными белками-переносчиками карбогидратов | |
5. Липосомы, содержащие октааргинин | Октааргинин - пептид легко преодолевающий мембраны клеток кишечника, значительно увеличивает биодоступность липосом | |
Инъекционный Перроральный | 6. Стерически стаби-лизированные Стеллс-липосомы | ПЭГ Липосомы покрыты полиэтиленгликолевой оболочкой, что делает их невидимыми для фагоцитарных клеток, и обеспечивает их лучшую сохранность в кровотоке при транспортировке к органу-мишени. |
Инъекционный | 7. Иммунолипосомы | Содержащие антитела к пораженным органам и покрытые полиэтиленгликолем |
8. рН, термочувстви-тельные и магнитоуп-равляемые липосомы | Освобождение липосомальных лекарств при снижении рН, повышении температуры 37-41°С и действия магнитного поля |
Ниже приведены фармакокинетические параметры некоторых липосомальных препаратов, которые по своим характеристикам существенно превосходят традиционные лекарственные формы.
Гинкголид:
При трансдермальном введении гибких нанолипосом крысам проникающая способность препарата составила 23,75 мкг*см (-2) *час (-1). Таким образом гибкие полисомы существенно облегчают скорость диффузии гинкголида Б через кожу крыс.
Винпоцетин:
Пролипосомы, содержащие винпоцетин водились кроликам перрорально. Проводилось сравнение с эквимолярной суспензией винпоцетина вводимой аналогично. Показано, что винпоцетин в липосомальной форме имел троекратно большее Тmax по сравнению с обычным винпоцетином. Биодоступность винпоцетина в пролипосомах превосходила таковую для суспензии в 3,5 раза.
Фоскарнет :
Инкапсуляция данного препарата в липосомы не только увеличивает активность и пролонгирует эффект препарата, но в значительной степени уменьшает его токсичность. При внутривенном введении кроликам липосомальный фоскарнет выводится медленнее, чем обычный препарат. В отличие от коммерческой формы препарата липосомальный фоскарнет обеспечивает продолжительный и стабильный терапевтический уровень препарата в сетчатке, в течение 72-х часов, достигая стекловидного тела в уровне адекватном для достижения целей соответствующей терапии, что позволяет эффективно бороться с ЦМВ и герпесным ретинитом.
Гидроморфон:
Важными фармакокинетическими преимуществами обладают так называемые липосомальные препараты с управляемым высвобождением. Одним из таких препаратов является, применяемый в ветеринарии препарат гидроморфон. При субкутантном введении липосомального препарата собакам значительно увеличивался период полувыведения гидроморфона, а также происходило значительное увеличение площади под фармакокинетической кривой. Все это позволяет снизить дозу данного препарата и избежать чрезмерных побочных эффектов.
5-фтороацил ( (5-Fu) - N3 -O -toluyl-fluorouracil, TFu, 5-FU):
5-фтороацил - химиотерапевтический противоопухолевой препарат, более известный в иностранной периодике как TFu.Ведутся разработки по получению перроральных и внутривенных форм TFu. Единственным способом создания таких форм данного препарата является создание липосом, загруженных TFu. Создание липосом TFuбезотносительно их размера всегда приводит к значительному увеличению биодоступности данного препарата в сравнении с его суспензией для перрорального введения, однако от размера липосом зависит гастроинтестинальная абсорбция липосом - чем меньше размер, тем она эффективнее. Наиболее эффективными фармакокинетическими характеристиками при внутривенном ведении обладали липосомы с размером частиц от 400 до 500 нм - демонстрируя высокую способность к проникновению в печень и селезенку - органы-мишени для данного препарата. Таким образом для перрорального введения предпочтительнее липосомы меньшего размера, в то время как для инъекционной формы подходят и крупные липосомы, как пассивные носители. Применение липосомальных форм TFuоткрывает новые перспективы для терапии гепатомы и спленомы.
Пуэрарин:
Применение пуэрарина в липосмальной форме при перроральном введении у крыс, обеспечивало увеличение биодоступности препарата на 68% по сравнению с его свободной формой.
6-меркаптопурин:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--