Статья: Синтез и физико-химические свойства магний - алюминиевого сорбента со структурой гидроталькита

(1) ,

безразмерная толщина (Х) слоя сорбента равна

(2).

Связь между безразмерным (Т) и реальным(t) временем сорбционного процесса определяется по формуле:

(3) ,

откуда следует однозначное соответствие этих времен.

После логарифмирования последнего соотношения получим:

(4)

Из выражения (4) следует, что в логарифмической системе координат эта связь становится аддитивной, и однозначное соответствие времен может быть установлено продольным смещением временных осей относительно друг друга. Методика сопоставления экспериментальных и теоретических кривых следующая: в результате фильтрования через слой сорбента получают экспериментальные точки зависимости

uэ=f(tэ) (5),

где uэ-экспериментально определенная относительная концентрация ионов в фильтрате; tэ-время, отсчитываемое с начала фильтрования.

Экспериментальные точки этой зависимости наносили на билогарифмическую сетку (рис.4), полностью аналогичную сетке теоретических кривых добиваясь при этом путем перемещения графиков вдоль осей времени наилучшего совпадения экспериментальных точек с одной из теоретических кривых U=F(X,T) при Н=const до соблюдения равенства uэ=U.

Рис.4 Наложение экспериментальных точек фильтрования на теоретические кривые динамики сорбции из жидких сред для [Fe(CN)6]3-.

Проведенные исследования позволили расчетным путем провести количественную оценку относительной способности ионов адсорбироваться полученным сорбентом, и на основе сопоставления расчетных и экспериментальных данных определить эффективность теоретических прогнозов и выявить те факторы, влияние которых приводит к отдельным отклонениям.

Выводы

1. Разработана новая методика синтеза сорбента на основе гидроксидов магния и алюминия со структурой гидроталькита с использованием золь-гель процесса.

2. Определены адсорбционно-структурные характеристики СОГ (удельная поверхность -135м2/г), общий объем пор - 0.34см3/г, распределение пористости по эквивалентным радиусам), позволяющие предложить синтезированный совместно осажденный гидроксид магния и алюминия в качестве неорганического ионообменника. Величину удельной поверхности образца определяли по низкотемпературной адсорбции азота хроматографическим методом с последующей обработкой полученных результатов по методу БЭТ. Для определения пористости использована ртутная порометрия.

3. Методами ИК-спектроскопии и ренгенофазового анализа установлены механизмы взаимодействия CrO42-, [Fe(CN)6]3-, [Fe(CN)6] 4, HgI4] 2- с совместно осажденным гидроксидом магния и алюминия со структурой гидроталькита.

- Выявлено, что полученный сорбент способен поглощать Cr (VI) за счет обмена, как с поверхностными, так и межслоевыми ОН - группами СОГ. Показана возможность обмена хромат-ионов на гидроксогруппы гидроксидных слоев, связанных напрямую с атомами металла. При этом количество гидроксильных групп способных обмениваться на Cr(VI) уменьшается, так как Cr (VI) переходит в неионообменное состояние.

- Установлено, что в отсутствии гидролизованных форм Hg(II) в растворах имеет место ионообменный механизм сорбции, для гидролизованных форм Hg(II) сорбция сопровождается образованием поверхностных внутрисферных комплексов AIOHgCI и AIOHgOHCI.

- Показано, что сорбция гексацианоферат-ионов зависит от рН и может протекать по двум механизмам: ионообменному, который лимитируется внутренней диффузией (при рН>10), и ионообменному, сопровождающемуся образованием новой фазы смешанного гексацианоферрата KMg [Fe(CN)6] (при рН<9). Скорость данного процесса лимитируется скоростью гетерогенной обменной реакции.

4. Исследована кинетика ионного обмена для всех вышеуказанных анионов. Установлено, что она лимитируется процессом внутренней диффузии ионов в транспортных порах сорбента. Экспериментальные данные сопоставлены с рассчитанными по моделям кинетики и динамики ионного обмена на зернистых сорбентах, что позволило применить полученные расчетные кривые для обработки и прогнозирования применения сорбента в опытно-промышленных условиях.

5. Показана возможность применения сорбентов на основе СОГ магния и алюминия для очистки сточных вод, содержащих Cr (VI), [Fe(CN)6]3- , что подтверждено проведением опытно-промышленных испытаний по извлечению Cr(VI), [Fe(CN)6]3- из сточных вод гальванических цехов ОАОТ «Краснодарский ЗИП». Установлено, что сорбент является высоко селективным к Cr(VI), [Fe(CN)6]3- и устойчив при работе в многоциклическом режиме.

Результаты диссертационной работы изложены в следующих публикациях:

1. Боковикова Т.Н. Синтез неорганических сорбентов на основе гидроксидов металлов и их систем. [Текст] / Т.Н. Боковикова, О.В. Новоселецкая, Н..Н. Полуляхова, Л.А. Марченко // Ж. «Известия высших учебных заведений. Северо-Кавказский регион. Технические науки», -г. Ростов-на Дону.-2005.- Приложение к №1, с.54-63.,

2 Полуляхова Н..Н. Решение проблемы очистки хромсодержащих стоков гальванопроизводств. [Текст] / Н..Н. Полуляхова, О.В.Новоселецкая, Р.И. Екутеч,А.А, Грахова // Сборник материалов 11 Всероссийской научно-практической конференции «Защитные покрытия в машиностроении и приборостроении»,- Пенза, 19-20 мая 2005 г, с. 74-75 .,

3. Процай А.А Расчет динамики сорбции ионов Cr(VI) в смешанно-диффузионной области кинетики. [Текст] / А.А. Процай, О.В. Новоселецкая, Н.М. Привалова, Н.Н. Полуляхова. // Сборник статей VII Всероссийской научно-технической конференции «Новые химические технологии: производство и применение», - Пенза, август 2005 г, с.86-90.,

4. Процай А.А. Ионообменные взаимодействия между гидроксидами двухвалентных и трехвалентных металлов и простых катионов [Текст] / А.А. Процай, О.В. Новоселецкая, Н.М. Привалова, Н.Н. Полуляхова. // Сборник статей VII Всероссийской научно-технической конференции «Новые химические технологии: производство и применение». Пенза, август 2005 г, с.82-86.,

К-во Просмотров: 205
Бесплатно скачать Статья: Синтез и физико-химические свойства магний - алюминиевого сорбента со структурой гидроталькита