Статья: Температура эфира и красные смещения

Гравитация есть процесс фазового перехода этой разновидности эфира в корпускулярный эфир, при котором вокруг вещества возникает градиент давления эфира. Этот градиент и есть сила гравитации.

Являясь элементарными электрическими диполями, то есть «нарушителями» баланса давления в фазовом эфире (на границе доменов, что не сказывается на давлении корпускулярного эфира), амеры фазового эфира являются причиной возникновения явлений поляризации (анизотропия распределения диполей), электрического поля и зарядов (отклонение давления в фазовом эфире в большую или меньшую сторону) и электромагнитного поля (света).

Так как энергетическая плотность свободного эфира 2,54·1017 [J/m3] не настолько велика, чтобы ее нельзя было изменить, и то реально в некоторых случаях можно наблюдать это изменение в виде изменения скорости света и красного смещения.

Изменение температуры свободного эфира

Свободный фазовый эфир является средой – носителем света, определяющим его скорость. Связь между плотностью свободного фазового эфира и скоростью света описывается классической формулой (1).

Согласно газовому закону при нагреве происходит падение плотности свободного эфира внутри и вблизи звезды.

Как выяснено автором, свободный эфир обладает чрезвычайно большой внутренней температуропроводностью, то есть практически мгновенно передает тепло на большие расстояния другим объемам свободного эфира, поэтому градиент температур весьма низок.

С другой стороны в связи с чрезвычайно большой разницей размеров и инерций свободного и связанного, корпускулярного эфиров, передача тепла к ним происходит весьма медленно.

В это же время, как уже было отмечено, температура корпускулярного и связанного фазового эфира практически неизменны в связи с их чудовищной теплоемкостью.

Отметим, что температура всех уровней эфира одинакова и неизменна в обычных условиях. В связи с большой разницей масштабов и высочайшей упругостью эфира температуры вещества и эфира никак не влияют друг на друга.

Пример: скорость движения 10 m/s камней по 0,1 kg в камнедробилке, пересчитанная в температуру составляет T = mv2/2k = 3,62·1023 K практически никак не влияет на температуру молекул вещества камней и воздуха, которая остается около 300 K. И даже спустя вечность эти температуры не сравняются, так как есть диссипация энергии во вне со высокой скоростью, характерной для окружающей газовой среды.

Иное происходит внутри звезд, где часть энергии газовой среды передается свободному эфиру, и даже небольшое изменение его температуры приводит к изменению скорости света. Это и есть причина К-эффекта, механизм которого мы рассмотрим ниже.

Отметим, что в данном случае аддитивной мерой является (z + 1), как пропорциональная температуре свободного эфира

К-эффект

Исследованиями живого классика астрофизики д-ра Хальтона Арпа, мудрым словам которого не внемлет астрофизическое сообщество, одурманенное релятивистскими догмами, было статистически строго доказано, что К-эффект четко зависит от абсолютной светимости звезд [11].

Реально, представляя теплопередачу от вещества эфиру внутри звезды обычной формулой теплопередачи, можно утверждать, что общая теплопередача будет пропорциональна произведению массы звезды на среднюю по объему температуру

В силу того, что светимость звезд является функцией их массы, и учитывая, что абсолютные логарифмическая и линейная светимости связаны по определению, можно вывести зависимость собственного красного смещения звезды или галактики от абсолютной светимости объекта.

Проведенное автором исследование показывает, что полученная формула в точности соответствует фактическим данным по К-эффекту.

Так как внутреннее красное смещение однозначно связано с плотностью свободного эфира, то последнюю также можно определить. Скорость света вдали от мощных источников света составляет 290 290 km/s, а оптическая плотность эфира n = 1,033.

Однако рассмотренное собственное красное смещение не определяет его распределения в пространстве, что важно для понимания физических явлений, порождаемых красным смещением, поэтому рассмотрим этот вопрос.

Температурная рассеивающая линза в эфире

Считая внутреннюю температуропроводность свободного фазового эфира на много порядков выше температуропроводности между ним и связанным и корпускулярным эфиром, можно найти градиент температуры в зависимости от расстояния от центра источника нагрева и, соответственно, функцию z от этого расстояния.

При рассмотрении этого вопроса основным является разделение пространства на четыре части:

внутреннюю, зону нагрева, где происходит накопление температуры от светящихся элементов объекта (звезд – для галактик, слоев газа – для звезд);

ближнюю внешнюю зону, зону рассеивания, где идет пространственное рассеивание тепла в свободном эфире без заметного поглощения корпускулярным эфиром;

дальнюю внешнюю зону, зону поглощения, где идет активное поглощение тепла свободного эфира корпускулярным;

дальний космос, где влияние данного объекта можно считать незначительным (отсутствующим с определенной степенью точности).

Понятно, что эти четыре зоны отличаются по размерам на порядки.

Зона нагрева для звезды ограничена ее фотосферой, для галактики определяется внешним расплывчатым краем. В первом приближении функцию собственного красного смещения в этой зоне можно считать параболической.

Зона рассеяния характеризуется равенством температурных напоров для точечного источника тепла в трехмерной изотропной среде.

Зона поглощения характеризуется превышением процесса поглощения тепла корпускулярным эфиром над процессом радиального рассеяния тепла свободного эфира.

Она относительно резко прерывает температурный поток от источника нагрева эфира. Эту зону можно считать границей влияния источника нагрева на параметры эфира. Благодаря наличию этой зоны температура свободного эфира дальнего космоса стабильна, а корпускулярный эфир в силу своей чудовищной теплоемкости не изменяет своих постоянных параметров.

К-во Просмотров: 273
Бесплатно скачать Статья: Температура эфира и красные смещения