Статья: Цвет и цветовоспроизведение в полиграфии

Нас окружает природа со своим великолепием красок. Вокруг нас зеленая трава и голубое небо. Мир полон ярких цветов, насекомых, и птиц. В жизни человека роль цвета велико и многообразно. Неоспорима и способность эмоционального воздействия цвета на психику человека.

Цвет и цветные оригиналы в полиграфии

Основную задачу, которую решают полиграфические технологии это высококачественная печать цветных изображений максимально приближенных по воспроизведению цвета к оригиналу. Совершенству нет предела, особенно когда речь идет о предмете, связанным с восприятием цвета.

Начала любого издания это его оригиналы и от них во многом зависит и качество издания и его общественная значимость. Цветные оригиналы – цветные изображения на плоскости (фотографии, рисунки, слайды, графика, в том числе, и компьютерная) играют особую роль в структуре любого издания, особенно в издания, несущих кроме информационной и эстетической, также и эмоциональной нагрузки, например, в рекламных и политических изданиях. Цветовоспроизведение в полиграфии – воспроизведение (репродуцирование) цветных оригиналов на оттиске, это одна из основных задач для полиграфии. Вся история развития полиграфических технологий и создание различных способов печатания непосредственно связаны именно с решением этой задачи.

Процесс цветного репродуцирования в полиграфии состоит из четырех стадий:

1. Считывание с оригинала информации о цвете каждого микроэлемента изображения и ее представление в виде трех величин, соответствующих пропускаемым (отражаемым) световым потокам в трех зонах видимого спектра – красной, зеленой и синей. Эта стадия называется аналитической.

2. Преобразование изображения в форму, пригодную для последующего воспроизведения на оттиске. Эта стадия включает в себя преобразование цветового пространства (из RGB в CMYK, Pantone, Hexachrome или иную модель), отображение цветового пространства оригинала в пространство оттиска с градационным цветовым преобразованием, обеспечивающим психологически точное воспроизведение цвета. Эта стадия носит название градационной и цветовой коррекции и преобразования.

3. Регистрация (запись) выделенных составляющих (цветоделенных изображений). Запись производится на фотографическом материале, на магнитных носителях, на формных материалах (пластинах) или на формных цилиндрах (в глубокой печати, при цифровой печати, в DI-технологии). Сюда же относятся необходимые технологические преобразования: растрирование, коррекция нелинейности устройства записи и т.д. Эта стадия носит название переходной, или стадии изготовления печатных форм.

4. Собственно печатание изображения на материальном носителе (бумаге, пластике и пр.) и получение оттиска (репродукции). Здесь производится наложение и совмещения цветоделенных изображений, окрашенных в соответствующие цвета применяемого синтеза и формирование изображения на оттиске. Эта стадия определена как синтез цветного изображение на оттиске или печатание.

Цветовоспроизведение в полиграфии основано на общих принципах синтеза цвета. Если на глаз действует смесь излучений, то реакции рецепторов на каждое из них складываются. Смешение окрашенных световых лучей дает луч нового цвета. Смесь красок имеет также иной цвет. Такой эффект получения нового цвета получил название синтез цвета.

Различают два основных вида синтеза цвета – аддитивный (смешение излучений, световых лучей) и субтрактивный синтез цвета (смешение вещественных сред, красок, растворов).

Аддитивный синтез цвета - воспроизведение цвета в результате оптического смешения излучений базовых цветов (красного, зелёного и синего - R, G, B). Используется при создании цветных изображений на экране в телевидении, в мониторах компьютеров издательских систем, возникает на отдельных участках растровых изображений оттиска (в светах изображения, где наложения разноцветных растровых элементов вследствие малых размеров менее вероятно) при автотипном синтезе цвета в полиграфии.

Субтрактивный синтез цвета - получение цвета в результате вычитания отдельных спектральных составляющих из белого света. Такой синтез наблюдается при освещении белым светом, цветного оттиска. Свет падает на цветной участок; при этом часть его поглощается (вычитается) красочным слоем, а остальная часть отражаясь, в виде окрашенного потока попадает в глаз наблюдателя. Этот синтез используется в полиграфии при смешении окрашенных сред, например, красок вне машины, для получения нужных цветов или оттенков на участках изображения при наложении растровых элементов разных красок на оттиске (на участках цветного изображения, где растровые элементы разных красок перекрываются в офсетной и высокой способах печати). В способе традиционной глубокой печати синтез цвета на оттиске по всему изображению является субтрактивным.

Автотипный синтез цвета - воспроизведение цвета в полиграфии, при котором цветное полутоновое изображение формируется разноцветными растровыми элементами (точками или микроштрихами) с одинаковой светлотой (насыщенностью) отдельных печатных красок, но различных размеров и форм. При этом эффект полутонов сохраняется благодаря тому, что тёмные участки оригинала воспроизводятся более крупными растровыми элементами, а светлые - более мелкими. При наложении растровых элементов на оттиске в процессе печатания синтез цвета носит смешенный аддитивно - субтрактивный характер.

Законы синтеза цвета, которые сформулировал Г. Грассман в 1853 г., являются базой научной теории о синтезе цвета. Эти три закона определены как:

1. Закон трехмерности. Любой цвет однозначно выражается тремя цветами, если они линейно независимы (линейная независимость заключается в том, что нельзя получить никакой из указанных трех цветов сложением двух остальных).

2. Закон непрерывности. При непрерывном изменении излучения цвет изменяется также непрерывно (не существует такого цвета, к которому невозможно было бы подобрать бесконечно близкий).

3. Закон аддитивности. Цвет смеси излучений зависит только от их цветов, но не от спектрального состава.

Все три закона наглядно проявляются в процессе синтеза цветных полутоновых изображений на оттиске.

Известно, что трехкомпонентная теория зрения является теоретической базой цветного синтеза при многокрасочном репродуцировании цветных оригиналов средствами полиграфической технологии, где используют триаду цветных красок - желтая (ж), пурпурная (п), и голубая (г). Применение четвертой черной (ч) краски не противоречит принципу трехкрасочного воспроизведения цветов, так как черную краску теоретически и практически можно рассматривать как смесь трех цветных красок. Черная краска одновременно заменяет три цветные и вместе с тем увеличивает их общее количество за один краскопрогон в печатной машине.

В полиграфии при воспроизведении цветных оригиналов способами офсетной и высокой печати ввиду растрового построения многокрасочной репродукции имеет место синтез цветов, содержащий признаки как аддитивного, так и субтрактивного синтезов, где в создании цветовых оттенков на цветной репродукции участвуют 16 разноокрашенных растровых элементов - незапечатанная бумага, три одинарные (основные цветные печатные краски ж, п, г) и черная ч, три бинарные (парные) наложения трехцветных печатных красок - ж+п, ж+г, п+г, двойные наложения цветная + черная - ж+ч, п+ч, г+ч, тройные наложения основных печатных (цветные и черная - ж+п+ч, ж+г+ч, п+г+ч, ж+п+г) красок и их четырехкратное наложение друг на друга с участием черной ж+п+г+ч. Восемь из них образованы с участием черной краски. Как уже было подчеркнута этот синтез назван автотипным, а способы печати, в которых используется этот синтез цвета, определяют как способы автотипной печати. В традиционном способе глубокой печати синтез цвета на оттиске является классическим субтрактивным синтезом.

Цвет в природе

Мир – это цвет и все, что мы видим, мы видим при помощи цвета и благодаря цвету. Цвет имеет не только информационную, но и эмоциональную составляющую. Человеческий глаз - очень тонкий инструмент, но, к сожалению, восприятие цвета субъективно. Очень трудно пересказать другому человеку свое ощущение цвета. Цвет можно только видеть. Все мы, хоть один раз в жизни видели, любовались и испытывали особые чувства и волнения перед таким явлением природы как радугой. Эти чувства, которые мы испытываем, нельзя ни пересказать, ни передать другому человеку. Все мы определяем, одним словом: "Смотри!".

Однако что такое цвет? Откуда он появляется, из чего состоит? В чем заключается особенность цвета как одного из наиболее сильных средств информационного, эмоционального и эстетического воздействия? Существуют ли и если существуют, то каковы закономерности восприятия цвета?

Природа цвета (Цвет как предмет науки)

Проблемами цвета с глубокой древности и до наших дней занимаются целый ряд научных дисциплин, каждая из которых изучает цвет с интересующей ее стороны. Физику, прежде всего, интересует энергетическая природа цвета, физиологию - процесс восприятия цвета человеком и превращения его в цвет, психологию - проблема восприятия цвета и воздействия его на психику, способность вызывать различные эмоции, биологию - значение и роль цвета в жизнедеятельности живых организмов и растений.

В современной науке о цвете важная роль принадлежит и математике, с помощью которой разрабатываются методы описания и измерения оттенков цвета. Имеется еще ряд научных дисциплин, изучающих роль цвета в более узких сферах человеческой деятельности, например, такие как полиграфия, химия лаков и красок, криминалистика и др. Совокупность всех этих наук, изучающих цвет определяют как область науки о цвете или цветоведение.

Параметры описания цвета

Действие на органы зрения излучений, длины волн которых находятся в диапазоне 400-700 нм, приводит к возникновению зрительных ощущений. Эти ощущения различаются, количественно и качественно. Физические свойства излучения - мощность и длина волны - тесно связаны со свойствами возбуждаемого им ощущения. Однако, хотя излучения и ощущения взаимосвязаны, эта связь сложная и подчиняется законам субъективного визуального восприятия светового излучения. Отсюда и деление параметров, характеризующих цвет, на объективные и субъективные.

Объективные характеристики цвета

Цвета всех спектральных излучений спектра видимого света располагаются в довольно коротком интервале длин волн излучения: от точки сине-фиолетового излучения с длиной волны 400 нм (нанометров) до точки красного излучения с длиной волны 700 нм.

Если рассматривать свет по волновой теории, то волна кроме длины имеет и вторую характеристику – мощность (амплитуда). Следовательно, из объективных характеристик цвета можно выделить его длины волны излучения и мощности излучения. Излучения, имеющие только одну длину волны, называют монохроматическими излучениями. В интервале длин волн видимого спектра монохроматические излучения определяют как спектральные цвета. Цвета двух монохроматических излучений видимого спектра, образующих белый свет, называют дополнительными цветами.

График цветности с локусом - линией спектральных цветов монохроматических излучений одинаковой мощности и линиями дополнительных цветов монохроматических излучений: желтого (560 им) и сине-фиолетового (450 им); голубого (490 им) и красного (615 им); оранжевого (575 им) и сине-голубого (480 им) приведен на рисунке 1. Внутри локуса располагаются цвета реальных излучений На пунктирной прямой линии, соединяющей две крайние точки локуса, располагаются наиболее насыщенные пурпурные цвета, которые можно получить лишь смешением крайних спектральных излучений красного и сине-фиолетового цвета. Дополнительные цвета располагаются в цветовом круге на прямой линии, проходящей через ахроматическую ось (черный – серый – белый цвет). Так, желтые излучения являются дополнительными к синим, а голубые (сине-зеленые) - дополнительными к красным. К оранжевому цвету дополнительным является сине-голубой. Следует помнить, что смесь двух излучений дополнительного цвета образует белое излучение, а смесь красок дополнительного цвета образует черную или близкую к ней краску.

Мощность излучения для цвета определяется понятием "яркость". Мощность излучения можно рассматривать в двух плоскостях: 1) мощность излучения непосредственно от источника излучения и, 2) мощность излучения от объекта отражающий или пропускающий излучения другого источника. Поверхность и вещество объекта, как правило, меняет мощность и длину волны излучения. Следовательно, яркость – понятие объективное (физическое) и оно характеризуется количеством света, попадающего в глаз наблюдателя от объекта излучающего, пропускающего сквозь себя или отражающего свет.

Белые поверхности

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 381
Бесплатно скачать Статья: Цвет и цветовоспроизведение в полиграфии