Статья: Уравнения и характеристики распространения волн реального электромагнитного поля

(b) , (d) , (g) .

Здесь соотношение (5a) вводится с помощью уравнения (1d), поскольку дивергенция ротора произвольного векторного поля тождественно равна нулю. Соответственно, (5b) следует из уравнения (1b) при , справедливого для сред с локальной электронейтральностью. Далее подстановка (5a) в (1а) дает (5c), а подстановка (5b) в (1c) приводит к (5d). Чисто вихревой характер компонент векторного потенциала и обеспечивается дивергентными уравнениями (5e) и (5g) кулоновской калибровки, однако физически они описывают отклик материальной среды на наличие в ней поля ЭМ векторного потенциала.

Как видим, объединение соотношений в систему (5) оказалось весьма конструктивным, так как в этом случае возникает система дифференциальных уравнений, описывающих значительно более сложное и необычное с точки зрения общепринятых воззрений вихревое векторное поле в виде совокупности функционально связанных между собой четырех вихрево-полевых компонент , и , , которое логично назвать реальным электромагнитным полем .

Объективность существования такого электродинамического поля иллюстрируется нетривиальными следствиями из полученных выше соотношений, поскольку подстановки (5c) в (5b) и (5d) в (5a) приводят к системе новых электродинамических уравнений, структурно полностью аналогичной системе традиционных уравнений Максвелла (1), но уже для поля ЭМ векторного потенциала с электрической и магнитной компонентами:

(a) , (b) , (6)

(c) , (d) .

Чисто вихревой характер компонент поля векторного потенциала обеспечивается условием кулоновской калибровки посредством дивергентных уравнений (6b) и (6d), которые при этом представляют собой начальные условия в математической задаче Коши для уравнений (6a) и (6c), что делает эту систему уравнений замкнутой.

Соответственно, математические операции с соотношениями (5) позволяют получить [4] еще две других системы уравнений:

для электрического поля с компонентами и

(a) , (b) , (7)

(c) , (d)

и для магнитного поля с компонентами и :

(a) , (b) , (8)

(c) , (d

Поскольку соотношения системы (5) можно получить независимо посредством действия векторного оператора набла и временной производной в пространстве поля компонент и векторного потенциала, то из них подобно системам (6) – (8) следуют и уравнения Максвелла (1), справедливые для локально электронейтральных сред ().

Таким образом, уравнения (5) первичной исходной взаимосвязикомпонент ЭМ поля и поля ЭМ векторного потенциала, безусловно, фундаментальны и объективно являются основными уравнениями современной полевой теории электромагнетизма.

Далее, как и следовало ожидать, из этих новых систем электродинамических уравнений непосредственно получаем (аналогично выводу формулы (2)) соотношения баланса:

судя по размерности, для потока момента ЭМ импульса из уравнений (6)

(9)

для потока электрической энергии из уравнений (7)

. (10)

и, наконец, для потока магнитной энергии из уравнений (8)

.(11)

Все это действительно подтверждает и объективно доказывает, что, наряду с ЭМ полем с векторными компонентами и , в Природе существуют и другие поля: поле ЭМ векторного потенциала с компонентами и , электрическое поле с компонентами и , магнитное поле с и . Таким образом, структура из двух векторных взаимно ортогональных компонент реализует способ существования конкретного электродинамического поля, делает принципиально возможным его перемещение в пространстве в виде потока соответствующей физической величины.

Можно убедиться, следуя логике рассуждений вывода волнового уравнения для поля вектора электрической напряженности , что форма и структура представленных систем уравнений (1), (6) - (8) говорят о существовании волновых решений для всех четырех компонент реального электромагнитного поля . Тем самым описываются волны конкретных вышеперечисленных двухкомпонентных полей посредством одной из парных комбинаций четырех указанных волновых уравнений. В итоге возникает очевидный вопрос: что это за волны, и каковы характеристики их распространения?

Поскольку структурная симметрия уравнений систем (1) и (6) математически тождественна, а волновые решения уравнений (1) выше уже проанализированы, то далее анализ условий распространения плоских электродинамических волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений систем (7) и (8). Их необычные структуры между собой также тождественны, а волновые решения уравнений в литературе не рассматривались.

Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны с компонентами и для системы (7) либо магнитной волны с компонентами и для системы (8), которые представим комплексными спектральными интегралами. Тогда, проводя аналогичные рассуждения, как и для рассматриваемого выше пакета плоской ЭМ волны, получим соотношения для волны электрического поля и . Соответственно, для магнитного поля и . Таким образом, для систем уравнений (7) и (8) имеем общее выражение: .

В конкретном случае среды идеального диэлектрика () из с учетом формулы следует обычное дисперсионное соотношение [2], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид:

и .

Главная специфика здесь состоит в том, что при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на , то есть характер поведения компонент поля таких волн в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, данный результат математически тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5)). Однако концептуально, с физической точки зрения такой факт примечателен и требует анализа.

Справедливости ради здесь уместно сказать, что впервые о реальности магнитной поперечной волны с двумя ее компонентами и , сдвинутыми при распространении по фазе колебаний на , еще в 1980 году официально заявил в виде приоритета на открытие Докторович [6], и свое достижение он с удивительным упорством, достойным лучшего применения, безуспешно пытается донести до других все эти долгие годы. Весьма печально, ибо только Время – высший судья, и именно оно расставит все и всех по своим местам!

Аналогичные рассуждения для пакета плоской волны векторного потенциала с компонентами и в системе (6) дают и , откуда снова получаем известное выражение . А потому для среды диэлектрика () дисперсионное соотношение для уравнений (6) будет при комплексных амплитудах в волновых решениях: , где сами решения описывают плоские однородные волны, компоненты поля которых, как и в случае ЭМ волн, синфазно распространяются в пространстве.

К-во Просмотров: 227
Бесплатно скачать Статья: Уравнения и характеристики распространения волн реального электромагнитного поля