Учебное пособие: Арифметические устройства

Рис. 15.6. Логическая схема полного сумматора

Полусумматоры, сумматоры обычно используются вместе. Так, для решения примера, показанного на (рис. 15.3), нужно иметь один полусумматор (для сложения в разделе единиц) и два полных сумматора (для сложения в разрядах двоек и четверок). Для сложения много разрядных двоичных чисел требуется довольно много полусумматоров и полных сумматоров. Микропроцессорные арифметико-логические устройства (АЛУ) используются для сложения 8-разрядных, 16- или 32-разрядных двоичных чисел в микропроцессорных системах, и в их состав входит большое количество схем, аналогичных полусумматорам и сумматорам.

Параллельный сумматор

Определенным образом, соединяя полусумматоры и полные сумматоры, друг с другом, получают устройства, одновременно выполняющие сложение нескольких двоичных разрядов. На рис. 15.7 показана схема 3-разрядного сумматора. Слагаемые обозначены A2A1A0 и B2B1B0.

Рис. 15.7. Структура 3-разрядного сумматора

Сигналы, соответствующие значениям разряда единиц в слагаемых, поступают на входы полусумматора. Входными сигналами для полного сумматора разряда двоек является сигнал переноса с выхода полусумматора на вход и значения разряда двоек в слагаемых. Сумматор четверок складывает и сигнал переноса с выхода сумматора двоек. Полученный результат отображается на выходах полусумматора и двух полных сумматоров. В результате сложения двух полных сумматоров. В результате сложения двух 3-разрядных двоичных чисел может получиться 4-разрядное число, поэтому на индикаторе суммы имеется дополнительный разряд восьмерок. Этот разряд связан с выходом сумматора четверок.

3-разрядный сумматор, изображенный на (рис. 15.7) является параллельным сумматором. В данной схеме информационных биты всех разрядов поступают на входы одновременно. Результат сложения появится на выходе практически мгновенно. Параллельный сумматор относится к классу комбинационных логических схем. Для фиксации данных на входах и выходах сумматоров обычно используется различные дополнительные регистры.

Двоичное вычитание

Рассмотрим вычитание двоичных чисел (рис. 15.8).

Рис. 15.8. Правила двоичного вычитания

На основании этих правил вычитания двоичных чисел, составим таблицу истинности (табл. 15.3).

Таблица 15.3. Таблица истинности для полувычитателя

Из табл. 15.3 видно, что если В больше А, то нужно занять 1 в соседнем старшем разряде. Сигнал заема указан в столбце .

С помощью табл. 15.3 можно найти логические функции, реализуемые полувычитанием. Для выхода получим: . Для выхода . На основании этих функций построим логическую схему полувычитателя (рис.15.9).

Рис. 15.9. Логическая схема полувычитателя

При вычитании многоразрядных двоичных чисел нужно принимать во внимание заем 1 в более старших разрядах.

Рассмотрим пример на вычитание двоичных чисел (рис. 15.10).

Рис. 15.10. Пример на двоичное вычитание

Составим таблицу истинности, которая содержит все возможные комбинации при вычитании двоичных чисел (табл. 15.4).

Таблица 15.4. Таблица истинности для полного вычитателя

Например, строка 5 (табл. 15.4) описывает ситуацию, возникающего при вычитании в разрядах единиц для вышерассмотренного примера (рис. 15.10).

Вычитанию в разряде двоек соответствует строка 3, в разряде четверок – строка 6, в разряде восьмерок – строка 3, в разряде с весом 16 – строка 2 и в разряде с весом 32 – строка 6 (табл. 15.4).

К-во Просмотров: 439
Бесплатно скачать Учебное пособие: Арифметические устройства