Учебное пособие: Эксимерные лазеры
3.2.2 Лазерная хирургия. Пример пересчета параметров лазерного излучения
Литература
Введение
Эксимерные лазеры - один из самых интересных видов лазеров. Излучение источников, относящихся к этому виду, в спектральном диапазоне занимает промежуток от 126 нм до 558 нм. Благодаря такой малой длине волны излучение эксимерных лазеров может быть сфокусировано в пятно очень маленького размера. Мощность этих источников достигает единиц кВт. Эксимерные лазеры относятся к импульсным источникам. Частота повторения импульсов может доходить до 500 Гц. Этот вид лазеров имеет очень высокий квантовый выход и, как следствие, достаточно высокий КПД (до 2 - 4%).
Благодаря таким необычным характеристикам, излучение эксимерных лазеров находит применение во многих областях и приложениях. Они используются в клиниках при проведении операций (на радужной оболочке глаза и других), где необходимо выжигание тканей. На основе этих лазеров созданы микрофотолитографические установки для тонкого травления материалов при создании электронных печатных плат. Широкое применение нашли эксимерные лазеры в экспериментальных научных исследованиях.
Однако, все эти замечательные характеристики эксимерных лазеров влекут за собой некоторые трудности при их изготовлении и создании установок на их основе. Например, при столь высокой мощности излучения необходимо препятствовать образованию дуги в активной газовой смеси. Для этого необходимо усложнить механизм накачки с целью сокращения длительности ее импульса. Коротковолновое излучение эксимерных лазеров требует использования специальных материалов и покрытий в конструкциях резонаторов, а также в оптических системах для преобразования их излучения. Поэтому одним из недостатков источников этого вида является высокая, по сравнению с другими видами лазеров, стоимость.
1. Теоретические основы
1.1 Активная среда
Активной средой эксимерного лазера являются молекулы газа. Но, в отличие от лазеров на CO, CO2 или N2 , генерация в эксимерных лазерах происходит не на переходах между различными колебательно-вращательными состояниями, а между различными электронными состояниями молекул. Существуют вещества, которые в основном состоянии не могут образовывать молекулы (их частицы в невозбужденном состоянии существуют лишь в мономерной форме). Это происходит, если основное состояние вещества соответствует взаимному отталкиванию атомов, является слабосвязанным, либо связанным, но при наличии больших межъядерных расстояниях (рис.1).
Рисунок 1: а - резко отталкивательная кривая; б - плоская кривая; в - кривая связанного состояния на больших межъядерных расстояниях
Молекулы рабочего вещества эксимерных лазеров грубо можно разделить на два вида: образованные частицами одного и того же вещества и частицами двух различных веществ. В соответствии с этим сами активные среды можно назвать "эксимеры" (excimer, exciteddimer - возбужденный димер) и "эксиплексы" (exciplex, excitedcomplex - возбужденный комплекс).
Процесс получения генерации в эксимерном лазере удобно рассмотреть с помощью рисунка 2, на котором представлены кривые потенциальной энергии для основного и возбужденного состояний двухатомной молекулы А2 .
Рисунок 2. Энергетические уровни эксимерного лазера.
Поскольку кривая потенциальной энергии возбужденного состояния имеет минимум, молекула А2 * может существовать. Данная молекула является эксимером. В процессе релаксации возбужденной среды устанавливается определенная траектория потока энергии, которая содержит скачок, преодолеваемый только испусканием излучения. Если в некотором объеме накопить довольно большое количество таких молекул, то на переходе между верхним (связанным) и нижним (свободным) уровнями можно получить генерацию (вынужденное излучение) - связанно-свободный переход.
Этот переход характеризуется следующими важными свойствами:
При переходе молекулы в основное состояние в результате генерации она немедленно диссоциирует;
Не существует четко выраженных вращательно-колебательных переходов, и переход является относительно широкополосным.
Если инверсия населенностей не достигается, то наблюдается флюоресценция.
Если нижнее состояние является слабосвязанным, то молекула в этом состоянии претерпевает быструю диссоциацию либо сама (предиссоциация), либо вследствие первого же столкновения с другой молекулой газовой смеси.
В настоящее время получена лазерная генерация на ряде эксимерных комплексов - квазимолекулах благородных газов, их окислах и галогенидах, а также парах металлических соединений. Длины волн генерации этих активных сред приведены в таблице 1.
Таблица 1
Эксимерные комплексы | Квазимолекулы благородных газов |
Окислы благородных газов | Пары металлических соединений | ||||
Активная квазимолекула | Xe2 * | Kr2 * | Ar2 * | ArO* | KrO* | XeO* | CdHg* |
λген , нм | 172 | 145,7 | 126 | 558 | 558 | 540 | 470 |
∆λ, нм | 20 | 13,8 | 8 | 25 | |||
Римп , МВт (Рср , Вт) | 75 | 50 | |||||
τ, нс | 10 | 10 | 4-15 | ||||
Активная квазимолекула | XeBr* | XeF* | ArF* | ArCl* | XeCl* | KrCl* | KrF* |
λген , нм | 282 | 351 | 193 | 175 | 308 | 220 | 248 |
∆λ, нм | 1 | 1,5 | 1,5 | 2 | 2,5 | 5 | 4 |
Римп , МВт (Рср , Вт) | (100) | 3 | 1000 | (0,02) | (7) |
5 (0,05) | 1000 |
τ, нс | 20 | 20 | 55 | 10 | 5 | 30 | 55 |
Для получения квазимолекул благородных газов используются чистые газы, находящиеся под давлением в десятки атмосфер; для получения окислов благородных газов - смесь исходных газов с молекулярным кислородом или соединениями, содержащими кислород, в соотношении 10000: 1 под таким же давлением; для получения галогенидов благородных газов - их смеси с галогенами в соотношении 10000: 1 (для аргона и ксенона) или 10: 1 (для ксенона или криптона) при общем давлении 0,1 - 1 МПа.