Учебное пособие: Эксимерные лазеры
В лазерах на галогенидах инертных газов существенное влияние на состояние плазмы оказывают процессы фотопоглощения. К ним относится фотодиссоциация исходного галогена, из которого образуется галогенид инертного газа F2 + hν → 2F; фотораспад образованного в плазме отрицательного иона F - + hν → F + e- ; фотоионизация возбужденных атомов и молекул инертного газа Ar* + hν → Ar+ + e- ; фотодиссоциация димеров ионов инертного газа Ar2 + + hν → Ar+ + Ar. А также поглощение самими молекулами галогенидов инертных газов.
Фотопоглощение в активной среде лазеров на галогенидах инертных газов можно разделить на линейчатое и широкополосное. Линейчатое поглощение возникает на связанно-связанных переходах, присутствующих в лазерной смеси примесей атомарных и молекулярных газов, а также свободных атомов и радикалов, образующихся под действием разряда либо при разложении примесных молекул, либо за счет эрозии электронов. Показано, что линейчатое поглощение в некоторых случаях может довольно существенно искажать спектр генерации, однако, как правило, не приводит к заметному снижению ее энергии. Широкополосное поглощение обусловлено, главным образом, связанно-свободными переходами, происходящими в процессах типа фотодиссоциации, фотоотлипания и фотоионизации.
Эксимерные лазеры на галогенидах инертных газов обычно накачиваются электрическим разрядом.
Эффективная накачка эксимерных лазеров, т.е. создание разряда оптимального с точки зрения вклада энергии в активную среду, еще не гарантирует получения высоких генерационных характеристик лазера. Не менее важно организовать извлечение из активной среды запасенной в ней световой энергии.
Это приобретает особое значение для лазеров на галогенидах инертных газов, так как их существенным отличием от большинства типов газовых лазеров оказывается наличие ненасыщающегося (линейного) фотопоглощения в активной среде. Потери на фотопоглощение, даже при отсутствии данных по измеренному поглощению слабого сигнала , могут быть оценены следующим образом.
При измеренных для данного эксимерного лазера коэффициенте усиления слабого сигнала и интенсивности насыщения рабочего перехода предельная, в пренебрежении всеми потерями, интенсивность, снимаемая с единицы апертуры активной среды, составит . Сравнение с экспериментально измеряемой интенсивностью на выходе позволяет оценить долю энергии, теряемую на фотопоглощение. Такое сравнение правомерно при невысоких сосредоточенных потерях, т.е. потерях на оптических окнах и зеркалах, что обычно имеет место.
1.1.2 Лазеры на окислах инертных газов
Лазеры на окислах инертных газов могут быть использованы при необходимости получения импульсов с длительностью порядка наносекунды и меньше и энергией несколько килоджоулей. Это связано с тем, что сечение вынужденного излучения генерирующего перехода в таких системах удовлетворяет необходимым требованиям. С одной стороны оно должно быть достаточно малым, чтобы паразитные потери не истощали инверсию населенностей, и в то же время для эффективного извлечения запасенной энергии это сечение должно быть достаточно большим, чтобы насыщение происходило при величинах потока, не достигающих порога разрушения оптических материалов. Учитывая все эти требования, можно заключить, что сечение вынужденного излучения должно быть около см2 .
Во всех эксимерных системах типа "инертный газ + элемент VI группы", за исключением случая XeO, переходы являются в основном свободно-свободными лишь с небольшим вкладом связанно-свободных эксимерных переходов.
В случае XeO характер взаимодействия следующий. Благодаря эффектам перекрывания взаимодействие между атомами с заполненной и незаполненной оболочками является главным образом отталкивательным. Силы притяжения возникают по двум причинам: во-первых, за счет дисперсионного и электростатического взаимодействия и, во-вторых, за счет переноса заряда, возникающего вследствие взаимодействия ионных и ковалентных конфигураций. Роль переноса заряда возрастает, если потенциал ионизации инертного газа уменьшается.
Излучательные переходы между синглетными валентными состояниями происходят исключительно вследствие столкновений. Взаимодействие с переносом заряда является преобладающим в переходах на более коротких расстояниях между атомами. С увеличением межатомных расстояний более важную роль начинают играть силы электростатического взаимодействия.
Что касается методов накачки, то кислород (или другие доноры элементов VI группы) в смеси с инертными газами целесообразно подвергнуть действию электронного пучка, чтобы воспользоваться передачей энергии за счет столкновений.
1.1.3 Лазеры на эксимерных молекулах чистых инертных газов
Обычно эксимерные лазеры на инертных газах работают при относительно высоких давлениях (более двух атмосфер), а источником возбуждения являются пучки электронов сравнительно высокой энергии и плотности (~1 МэВ, сотни А·см-2 ). При таких условиях концентрация электронов в образующейся плазме довольно высока (более 1014 см-3 ).
Механизм селективной накачки эксимерных уровней можно упрощенно рассматривать как последовательность столкновений с обменом энергией. Электроны высокой энергии ионизируют или возбуждают основной газ в результате реакций типа e - + Ar → Ar+ + 2e- ; e - + Ar → Ar* + e. Все примеры, приводимые для аргона, справедливы также для ксенона и криптона. В зависимости от используемого газа вторичные электроны имеют среднюю энергию в диапазоне 5 - 7 эВ.
При высоких давлениях, характерных для рассматриваемых лазеров, трехчастичная ассоциация по схеме Ar+ + 2Ar → Ar2 + + Ar протекает достаточно быстро. Затем в процессе диссоциации образуются нейтральные возбужденные диссоциирующие молекулы e - + Ar2 + → Ar2 → Ar** + Ar. Процессы трехчастичной ассоциации, имеющие большую скорость при высоких давлениях, приводят затем к образованию связанных молекулярных уровней Ar** + 2Ar → Ar2 * + Ar. Самые низкие возбужденные состояния молекул не пересекаются отталкивательными кривыми, и поэтому молекулы в таких состояниях не диссоциируют. При высоких давлениях процессы, описанные выше, протекают быстрее радиационного распада, так что эта цепочка процессов позволяет получить высокую плотность инверсии населенностей.
1.1.4 Лазеры на двухатомных галогенах
Между лазерами на гомоядерных молекулах галогенов и лазерами на эксимерных соединениях атома инертного газа и атома галогена имеется значительное сходство. Однако, они относятся к разным типам устройств.
Лазеры на двухатомных галогенах, так же как лазеры на моногалогенидах инертных газов и лазеры на галогенидах ртути, генерируют на переходах между верхним состоянием ионного типа и нижним ковалентным состоянием. Таким образом, и характеристики этих лазеров должны быть аналогичными. Нижние состояния моногалогенидов инертных газов (за исключением XeF) являются отталкивательными, что облегчает получение инверсии населенностей. Однако гомоядерные молекулы галогенов имеют тенденцию к переходам на высокие колебательные уровни связанных нижних электронных состояний. Поэтому в них инверсия определяется быстрой колебательной и электронной релаксацией.
Основные кинетические процессы, протекающие в лазерах на галогенидах, представлены на рисунке 3.
Лазерная накачка электронным пучком или разрядом способна быстро и эффективно создавать первичные состояния во всем объеме газа. В реакциях с передачей энергии от примеси галогену образуются возбужденные атомы галогенов X* . Возможной реакцией, в которой создаются другие первичные состояния, является реакция с одновременным образованием отрицательных ионов X - ( за счет диссоциативного прилипания электронов низкой энергии) и галогенсодержащих положительных ионов X+ или RX+ . Реакции ион-ионной нейтрализации (процесс 1) могут затем произвести возбужденные состояния гомоядерных галогенов. Возбужденные нейтральные атомы могут образовывать молекулы галогенов путем гарпунных реакций (процесс 2).
Рисунок 3. Схема основных кинетических процессов, связанных с возникновением генерации в двухатомных галогенах
При высоком давлении газа в рабочем объеме быстрая электронная и колебательная релаксация приводит к заселению наинизших уровней ионных термов. Чтобы эти процессы оказались эффективными, молекула не должна иметь отталкивательных потенциальных кривых, соответствующих атомам в основных состояниях и пересекающих потенциальные кривые связанных верхних состояний. Дезактивация верхних уровней происходит за счет излучения (процесс 4) и тушения (процесс 5), первый из которых является желательным, а второй - нежелательным процессом. Из спектроскопических измерений следует, что излучательные процессы заканчиваются на высоких колебательных уровнях нижней потенциальной кривой, которая не представляет собой основное состояние. Последующие столкновения в газе способствуют быстрой колебательной релаксации или даже диссоциации нижнего уровня, поддерживая таким образом инверсию населенностей. К заселению верхнего лазерного уровня могут приводить несколько различных процессов. Нижний уровень не обязательно является самым низким энергетическим состоянием молекулы.
На рисунке 4 приведены спектры испускания галогенов.
Рисунок 4. Спектры испускания галогенов
В случае йода спектр был снят за 1, 3 и 5 импульсов, а в случае брома - за 1, 5 и 10 импульсов. Длинноволновая часть импульсов характеризуется большим количеством подавленных импульсов.
1.1.5 Лазеры на парах металлов
Эксимерные молекулы с атомами металлов характеризуются несколькими важными свойствами. Во-первых, их эксимерные полосы располагаются на крыльях линий паров металлов; следовательно, наиболее интересные полосы, соответствующие переходам из основного состояния в первое возбужденное, обычно находятся в видимой или ближних УФ и ИК областях спектра. Во-вторых, многие из возбужденных состояний AB* , определяющие эти полосы, являются слабосвязанными. Для того, чтобы иметь соответствующее давление паров металлов, требуемое для получения достаточного коэффициента усиления, необходимы повышенные температуры (за исключением случая Hg). При этом возникает сложная техническая проблема, связанная с химическим взаимодействием с материалами окон и прокладок. И, наконец, энергия атомов металлов в наинизшем возбужденном состоянии, как правило, составляет менее половины энергии ионизации. Это свойство имеет важные следствия для электронных столкновительных сечений, которыми определяется КПД потенциальных электроионизационных и электроразрядных лазеров высокой мощности.
Наличие слабой связи у многих эксимеров с участием атомов металлов сильно отражается на их оптических свойствах, когда они используются как лазерная среда. Это приводит к низкому показателю усиления в расчете на возбужденный атом металла; однородному уширению эксимерной полосы; быстрым переходам между возбужденными атомами A* и соответствующими эксимерными молекулами AB* ; а также к необходимости повышать плотность инертного газа и к довольно строгим требованиям, накладываемым на степень возбуждения атомов металлов. Также наличие слабой связи позволяет получать (благодаря низкому показателю усиления и однородному уширению) высокие уровни мощности, а также большие энергии в импульсе, чему способствует отвод тепла инертным газом, находящимся при высоком давлении.