Учебное пособие: Ферромагнитные жидкости
Впервые методика получения стабилизированного коллоидного раствора магнетита была предложена в конце 30-х годов Элмором [1, 2]. В последнее время такие жидкости получают методом конденсации при осаждении магнетита щелочью из водных растворов солей двух- и трехвалентного железа. Подробное описание большинства подобных методик приведено в работе [3]. В результате получают магнитные жидкости, вязкость которых при намагниченности насыщения 50 – 60 кА/м может быть сравнима с вязкостью воды. Полидисперсность магнетитовых частиц, полученных описанным способом, определяется колоколообразной функцией распределения частиц по размерам с шириной распределения порядка среднего размера частиц (около 10 нм). В качестве примера на рисунках 1 и 2 представлены электронные фотографии частиц двух образцов МЖ [4], из которых видно, что дисперсные частицы имеют форму, близкую к сферической.
Рисунок 1. Рисунок 2.
Электронные фотография частиц МЖ
На рисунках 3 и 4 для этих же образцов приведены нормированные гистограммы распределения частиц по размерам с шириной классового интервала 1,2 нм, полученные при анализе микрофотографий на основе нескольких (пяти) тысячи измерений.
Рисунок 3. Рисунок 4.
Распределение частиц по размерам (F – относительное число частиц диаметром d) в МЖ
В столь малых частицах при сохранении в них самопроизвольной намагниченности возрастает вероятность тепловых флуктуаций магнитного момента частицы [5]. В результате этого появляется возможность вращения магнитного момента относительно твердой матрицы. Впервые на этот тип вращения магнитного момента было указано Л. Неелем [6], а такие частицы получили название “суперпарамагнитные” [7]. Время неелевской релаксации магнитного момента определяется выражением [8]:
(1.1)
где σ = K эфф V /kT – константа суммарной анизотропии, V – объем частицы, τ0 = 10- 9 с.
В жидкой среде возможна также вращательная диффузия самих частиц. В этом случае может проявиться броуновский механизм релаксации магнитного момента. Преобладание того или иного механизма релаксации определяется соотношением времен релаксации Нееля τ N и вращательной диффузии τ D = 3 Vη /kT , где η – вязкость дисперсионной среды.
Основным средством управления магнитными жидкостями является магнитное поле. Например, с помощью воздействия на них неоднородного магнитного поля можно достичь объемных пондеромоторных сил на несколько порядков превышающих силу тяжести. Эти силы используются в магнитожидкостных сепараторах, датчиках ускорений и т.д. Вследствие возможности локализации МЖ полем были разработаны магнитожидкостные уплотнения, управляемые смазочные материалы, магниточувствительные жидкости для дефектоскопии и т.п. На практике применяются самые разнообразные магнитные жидкости, среди которых следует особо выделить МЖ на основе минеральных масел и кремнийорганических сред. Вязкость таких магнитных жидкостей при намагниченности насыщения до 60 кА/м может достигать величины порядка 104 Па·с, поэтому их иногда сравнивают с магнитными пастами. Для нужд медицины разрабатываются МЖ на различных пищевых растительных маслах.
§2. Представления о намагничивании агрегативно-устойчивых полидисперсных магнитных жидкостей в рамках одночастичной модели
На начальном этапе исследования магнитных жидкостей было сформировано представление о них как однородной жидкой намагничивающейся среде с термодинамически равновесной поляризацией. В этом случае пондеромоторное воздействие неоднородного магнитного поля на магнитную жидкость рассматривалось на основе наличия в ней объемной плотности сил и объемной плотности импульсов сил.
Возможность представления магнитной жидкости в виде однородного дипольного газа, в котором элементарным носителем магнитного момента является дисперсная частица, позволяет применить для описания намагничивания такой системы закон Ланжевена [9], выведенный им для ансамбля молекул парамагнитного газа. В этом случае выражение для намагниченности магнитной жидкости М в магнитном поле Н может быть представлено в виде:
, (1.2)
,
где М S – намагниченность насыщения исходного диспергированного вещества, φ – объемная концентрация твердой фазы, М∞ – намагниченность насыщения магнитной жидкости, m – магнитный момент дисперсной частицы.
В области слабых полей функция Ланжевена может быть представлена первым членом разложения в ряд Тейлора (). В этом случае выражение для начальной магнитной восприимчивости χ = М/Н имеет вид:
(1.3)
Анализ последнего выражения с учетом того, что магнитный момент дисперсной частицы определяется величиной ее объема (), приводит к выводу о сильной зависимости величины магнитной восприимчивости магнитной жидкости от диаметра дисперсных частиц (). Так, например, увеличение диаметра частиц от 8 до 14 нм должно привести к увеличению магнитной восприимчивости более чем на порядок. Вместе с тем, нетрудно заметить, что увеличение размера частиц при сохранении их числовой концентрации приводит также и к увеличению объемного содержания дисперсной фазы, допустимая величина которого для устойчивых магнитных жидкостей не превышает 20 - 25 объемных процентов. Очевидно, для удобства анализа магнитной восприимчивости магнитных жидкостей нужно использовать для нее другое выражение, в которое кроме размера частиц входил бы параметр, характеризующий их объемное содержание. Предполагая, что форма частиц близка к сферической, с учетом m = MS V для магнитной восприимчивости магнитной жидкости нетрудно получить:
(1.4)
где М∞ = nm – намагниченность насыщения коллоида, d – диаметр частиц, n – число частиц в единице объема.
Как можно видеть, в это выражение входит намагниченность насыщения магнитной жидкости (), определяемая величиной объемной концентрации магнитной фазы .
В области сильных полей (ξ >> 1) функцию Ланжевена можно представить в виде L (ξ) = 1 – 1/ξ и тогда уравнение (1.2) принимает вид:
. (1.5)
На основе ланжевеновской зависимости намагниченности от поля возник метод магнитной гранулометрии [10]. С помощью этого метода возможно определение диаметра частиц d 0 частицы по измерениям магнитной восприимчивости в слабых полях и по измерениям намагниченности насыщения d ∞ в области сильных полей. Соответствующие расчеты проводятся по формулам:
. (1.6)
где в области линейной зависимости М (1/Н ).