Учебное пособие: Физика: механика и термодинамика
Комментарии:
Момент силы: По результатам вычислений М =
По графику 2 М =
Комментарии:
Лабораторная работа №3
ИЗУЧЕНИЕ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ
Цель работы:
Углубить знания по теории гармонических колебаний; освоить методику экспериментальных наблюдений и проверить законы незатухающих гармонических колебаний на примере математического, крутильного или физического маятников; закрепить навыки обработки, оформления и представления экспериментальных результатов.
Часть I. Математический маятник
1.1. Теоретическая часть
Маятник – тело, совершающее колебательное движение под действием упругой или подобной ей, «квазиупругой» силы. Простейший маятник – массивный груз на подвесе, находящийся в поле силы тяжести. Если подвес нерастяжим, размеры груза пренебрежимо малы по сравнению с длиной подвеса и масса нити пренебрежимо мала по сравнению с массой груза, то груз можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса О . Такой маятник называется математическим .
На груз действуют силы: натяжения нити и тяжести , которые в положении равновесия (точка С, рис.1) компенсируют друг друга . Для возбуждения колебаний маятник выводят из положения равновесия, например, в точку С`. Теперь на него действует сила , направленная к положению равновесия и пропорциональная смещению, маятник обладает избыточной потенциальной энергией mgh по отношению к положению равновесия. Эта энергия обуславливает колебание, происходящее по дуге окружности и описываемое основным уравнением динамики вращательного движения
, (1)
где - результирующий вращающий момент, модуль этого вектора равен ; - угловое ускорение, J = ml2 – момент инерции груза относительно оси ОО ¢ , проходящей через точку подвеса О , перпендикулярно плоскости колебаний (плоскости чертежа).
Дифференциальное уравнение колебаний математического маятника в отсутствии сил сопротивления имеет вид
, (2)
откуда получаем
(3)
Для достаточно малых углов ( j < 5-6 ° ) sin j » j (в радианах), тогда
, (4)
где .
Уравнение (4) представляет собой однородное дифференциальное уравнение второго порядка. Его решением является функция
, (5)
где j 0 – амплитуда, a 0 – начальная фаза . В этом можно убедиться, подставив (5) в (4).
Из (5) следует, что угол отклонения маятника из положения равновесия изменяется по гармоническому закону. Величина является циклической частотой собственных колебаний маятника, тогда величина
(6)
- период колебаний математического маятника.1
Из выражения (6) следуют три закона колебаний математического маятника:
При малых углах отклонения (sin j » j или j < 60 ) и в отсутствие сторонних сил
1.период колебаний не зависит от массы маятника;
2.период колебаний не зависит от амплитуды;
3.период колебаний определяется формулой .
Две из этих закономе