Учебное пособие: Физика

Розробив викладач МТ ПД ТУ

М.М. Бабич

200 8

МЕХАНИКА

Введение

Физика изучает явления, наблюдаемые в реальном мире, и свойства материальных объектов. Эти явления и свойства мы характеризуем с помощью физических величин. Например, движение характеризуется скоростью и ускорением, свойства тел притягивать друг друга характеризуются массой или зарядом. Наблюдаемые нами явления и физические свойства тел возникают вследствие взаимодействия между телами либо между частицами — атомами и молекулами, из которых состоят материальные тела. В результате этих взаимодействий соответствующие физические величины не остаются постоянными, а испытывают всевозможные изменения. Эти изменения могут происходить как непрерывно, так и скачками, как по величине, так и по направлению. При наблюдении изменений физических величин возникает необходимость в их количественной и качественной оценке. Для этой цели физика использует математические методы.

В отличие от математики, которая изучает количественные и пространственные отношения между рассматриваемыми объектами, физика изучает материальные свойства тел и частиц, из которых состоят эти тела. Как показывает опыт, материальные свойства обусловлены взаимодействиями между телами либо между частицами. В природе существуют разные взаимодействия. Каждое из них имеет свои особенности, и поэтому физика разделяется на ряд областей, изучающих отдельные виды взаимодействий. На первый взгляд физика состоит из целого ряда независимых разделов — механики, термодинамики, электродинамики, оптики и других. На самом деле эти области физики настолько связаны друг с другом, что не могут существовать друг без друга и, строго говоря, даже не могут быть разделены. Ведь сама природа не делит всевозможные взаимодействия на различные виды, в природе все происходит сразу и вместе. Возможность рассмотрения каждого вида взаимодействия по отдельности, как это делается в физике, связана с тем, что при изучении конкретного взаимодействия мы считаем, что другие взаимодействия отсутствуют или очень малы. Можно ли это делать или нельзя, в каждом отдельном случае показывает опыт. В этом заключается существо физического подхода к изучению явлений и свойств материальных объектов.

Наши знания о различных видах взаимодействий возникли не сразу, а развивались последовательно и постепенно. Сначала постигались наиболее простые механизмы взаимодействий, при этом все, что не соответствовало опыту, отбрасывалось, а то, что было нужно и полезно, закладывалось в фундамент Нового знания. Так — от простого к сложному — возводилась конструкция огромного и связанного воедино здания современной физики. При изучении физики мы тоже будем следовать этому естественному принципу.

Во многих случаях действие одного тела на другое или каких-либо частиц друг на друга мы, в конечном счете, обнаруживаем, наблюдая перемещение какого-либо макроскопического тела в пространстве. Макроскопическим мы называем тело, состоящее из большого числа микроскопических частиц — атомов и молекул. На опыте мы всегда имеем дело с макроскопическими телами, хотя результаты опыта позволяют нам часто судить о свойствах составляющих тело микрочастиц (именно так мы узнали о существовании атомов и молекул).

Например, при столкновении одного шара с другим шар, который прежде находился в покое, переместился в пространстве. Изменение электрического тока в цепи мы отмечаем по перемещению стрёлки амперметра. Увеличение температуры мы обнаруживаем по перемещению ртутного столбика в термометре. Конечно, не всегда действие одного тела на другое обязательно приводит к перемещению последнего, во нас сейчас будет интересовать именно такой результат действия, поскольку он является наиболее простым из всех, которые встречаются в природе.

Как показывает опыт, никакое следствие не возникает без причины. В частности, причиной указанных выше перемещений макроскопических тел являются действия на них других тел. Таким образом, измеряя перемещение тела вследствие его взаимодействия с другими телами, мы можем судить о характере и величине этого взаимодействия. Поэтому так важно уметь описывать всевозможные перемещения тела в пространстве и характеризовать состояние тела в процессе его перемещения.

Перемещение тела в пространстве с течением времени представляет собой движение. Раздел физики, в котором изучается движение тел и его изменения в результате действия других тел, называется механикой. В свою очередь раздел механики, в котором изучают свойства движения тел, не рассматривая причин, приводящих к этому движению, называют кинематикой, а раздел механики, в котором изучается изменение движения под действием других тел называют динамикой.

Изучая физику, мы будем иметь дело с физическими величинами. Необходимо ясно представлять себе, что такое физическая величина, чем она отличается от математической иди от величин, рассматриваемых в других науках.

Физика — опытная наука. Все, что мы узнали о материальном мире, возникло из опыта. И любые заключения и предположения, которые мы делаем о свойствах материальных объектов, в конечном счете проверяются на опыте. Другими словами, опыт является окончательным критерием правильности наших представлений. В процессе опыта мы определяем те или иные физические величины, например скорость или температуру. Таким образом, определить физическую величину означает указать способ ее измерения. Физические величины являются наблюдаемыми. Напротив, если мы говорим о какой-либо величине и не можем указать способ ее измерения, то она не является наблюдаемой. Такие величины просто не рассматриваются в физике, не являются ее предметом.

Далее, физические величины являются достоверными в том смысле, что физический опыт должен обладать свойством повторяемости. Это значит, что при повторении опыт, проведенный в равных условиях, должен приводить всякий раз к одинаковому результату. В других науках это не всегда так, и чем менее выполняется это требование, тем менее эта наука достоверна.

Физические величины обладают свойством размерности. Под размерностью физической величины понимают совокупность параметров, необходимых для ее определения. Другими словами, указать размерность физической величины означает указать, какие измерения нужно произвести, чтобы ее определить. Самые простые физические величины — это длина, время и масса. Они имеют, как говорят, собственные размерности, обозначаемые соответственно буквами L , T и M , потому что для их определения никаких других измерений производить не нужно. Но уже, например, для определения скорости тела необходимо произвести два независимых измерения — длины L и времени T . Поэтому размерность скорости есть отношение L /T . Как мы увидим, размерность физической величины находится с помощью формулы, которая служит ее определением.

Подчеркнем, что размерность физической величины и единицы ее измерения — это разные понятия. Например, скорость может измеряться в см/с, или в м/с, или в км/ч, а размерность ее при этом не меняется — она всегда есть L /T , потому что независимо от того, в каких единицах мы измеряем скорость, мы всегда производим измерения одних и тех же двух параметров — длины L , и времени T . Размерность физической величины представляет ее важнейшее свойство. Часто приходится сравнивать между собой различные величины. Физические величины можно сравнивать, только если они обладают одинаковой размерностью. Например, нельзя сравнивать между собой длину пути и отрезки времени: это бессмысленно — они обладают разной размерностью.

Кинематика материальной точки

Одним из основных понятий механики является понятие материальной точки, что означает тело, обладающее массой, размерами которого можно пренебречь при рассмотрении его движения. Движение материальной точки — простейшая задача механики, которая позволит рассмотреть более сложные типы движений.

Перемещение материальной точки происходит в пространстве и изменяется со временем. Реальное пространство трехмерно, и положение материальной точки в любой момент времени полностью определяется тремя числами — ее координатами в выбранной системе отсчета. Число независимых величин, задание которых необходимо для однозначного определения положения тела, называется числом его степеней свободы. В качестве системы координат выберем прямоугольную, или декартову, систему координат. Для описания движения точки, кроме системы координат, необходимо еще иметь устройство, с помощью которого можно измерять различные отрезки времени. Такое устройство назовем часами. Выбранная система координат и связанные с ней часы образуют систему отсчета.

Декартовы координаты X ,Y ,Z определяют в пространстве радиус-вектор z , острие которого описывает при его изменении со временем траекторию материальной точки. Длина траектории точки представляет собой величину пройденного пути S (t ). Путь S (t )— скалярная величина. Наряду с величиной пройденного пути, перемещение точки характеризуется направлением, в котором она движется. Разность двух радиус-векторов, взятых в различные моменты времени, образует вектор перемещения точки (рисунок).

Для того чтобы характеризовать, как быстро меняется положение точки в пространстве, пользуются понятием скорости. Под средней скоростью движения по траектории за конечное время Dt понимают отношение пройденного за это время конечного пути DS ко времени:

. (1.1)

Скорость движения точки по траектории — скалярная величина. Наряду с ней можно говорить о средней скорости перемещения точки. Эта скорость — величина, направленная вдоль вектора перемещения,

. (1.2)

Если моменты времени t1 , и t2 бесконечно близки, то время Dt бесконечно мало и в этом случае обозначается через dt . За время dt точка проходит бесконечно малое расстояние dS . Их отношение образует мгновенную скорость точки

. (1.3)

Производная радиус-вектора r по времени определяет мгновенную скорость перемещения точки.


. (1.4)

Поскольку перемещение совпадает с бесконечно малым элементом траектории dr = dS , то вектор скорости направлен по касательной к траектории, а его величина:

. (1.5)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 522
Бесплатно скачать Учебное пособие: Физика