Учебное пособие: Гази у зовнішньому силовому полі та основи термодинаміки
Отже, поняття «вакуум» відносне. Воно взагалі застосовується лише для газу, що знаходиться в об’ємі, обмеженому стінками.
Теорія і дослід показує, що фізичні процеси в газах, в яких зіткнення молекул між собою відбувається дуже рідко в порівнянні із зіткненнями молекул зі стінками, протікає інакше, ніж тоді, число взаємних зіткнень молекул велике. Отже при переході до вакууму змінюється характер протікання фізичних процесів (дифузія, теплопровідність, внутрішнє тертя). Число взаємних зіткнень молекул буде незначним, як що довжина їх вільного пробігу більша чи рівна розміром посудини.
Тому в фізиці вакуумом називають таке розрідження, при якому середня довжина вільного пробігу молекул газу має величину порядку розмірів посудини або перевищує його. Газ в стані високого вакууму називають ще ультрарозрідженим газом.
Високий вакуум в даний час грає велику роль як в лабораторних дослідженнях, так і в техніці. Він широко застосовується для різних електротехнічних і радіотехнічних цілей (електроламп, радіоламп, рентгенівських трубок, електронно-променевих трубок і ін.), в прискорювачах заряджених частинок і т.д. Це дало потужний поштовх для розвитку вакуумної техніки.
Перший і другий закони термодинаміки. Максимальний КПД теплової машини. Поняття про ентропію
Із механіки відомо, що будь-яке тіло, або система тіл можуть мати кінетичну і потенціальну енергію і являє собою матеріальну точку. Але кожне тіло складається з дуже великого числа частинок (атомів, іонів, молекул), які безперервно рухаються і взаємодіють між собою. Отже всі частинки тіла називаються внутрішньою енергією – U . Отже повна енергія тіла буде
.
Внутрішня енергія U є однозначною функцією стану тіла, або системи і визначається його параметрами.
Обрахувати внутрішню енергію дуже складно, а на практиці, здебільшого обраховують зміну внутрішньої енергії D U . Якщо наприклад, взяти ідеальний газ, молекули якого – матеріальні точки, що не взаємодіють між собою, то враховуючи що середня кінетична енергія молекули , для моля або , а для будь-якої маси газу , а зміна внутрішньої енергії .
В загальному ж випадку внутрішня енергія складається із
А) кінетичної енергії поступального руху частинок,
Б) потенціальної енергії взаємодії частинок,
В) енергії коливального руху частинок біля положення рівноваги,
Г) енергії електронних оболонок атомів та молекул,
Д) енергій взаємодії нуклонів в ядрі.
Внутрішня енергія тіла або системи буде змінюватись при взаємодії з зовнішніми тілами, причому в випадках: або при здійсненні роботи, або при теплообміні.
Якщо система нерухома, то робота виконується при зміні об’єму тіла – це робота яку здійснюють зовнішні сили. По закону збереження енергії , де D A – робота яку здійснює система проти зовнішніх сил. Якщо ж система одержує також енергію у вигляді тепла D Q , то на основі закону збереження енергії , або , отже
(7)
це і є перший закон термодинаміки: теплота, одержана системою витрачається на зміну внутрішньої енергії системи і на виконання роботи системою проти зовнішніх сил.
Перший закон термодинаміки являє собою закон збереження і перетворення енергії.
Із першого закону (7) випливає, що якщо D Q = 0 , то D A = – D U , отже робота системою може виконуватись, без споживання зовнішньої енергії, але за рахунок зменшення внутрішньої енергії. Але внутрішня енергія – величина кінетична, отже кінетичною буде і робота. Таким чином: вічний двигун першого роду неможливий, це також формулювання першого закону термодинаміки.
Перший закон термодинаміки – це загальний закон збереження енергії, але він нічого не говорить про напрямок передачі теплоти. На основі численних дослідів було встановлено:
теплота ніколи не може переходити сама собою від тіл з більш низькою температурою до тіл з більш високою температурою – це другий закон термодинаміки, який можна формулювати і так: неможливий процес, єдиним результатом якого було б перетворення всієї теплоти, одержаної від деякого тіла, в еквівалентну їй роботу.
Якщо, наприклад, від нагрівника з температурою Т , одержується певна кількість теплоти, то щоб теплова машина працювала, необхідно щоб був і холодильник з температурою Т2 Т1 , якому передається частина теплоти. Отже, не вся одержана теплота перетворюється в роботу. Частина її втрачається – віддається холодильнику, або розсіюється в просторі.
Розрахунки показують, що максимальний КПД теплової машини рівний:
(8)
Із другого закону термодинаміки витікає, що величина
(9)
є повним диференціалом функції S яку назвали ентропією.