Учебное пособие: Генераторы синусоидальных колебаний
Электронными генераторами называются устройства, преобразующие электрическую энергию источника постоянного тока (источника питания) в энергию электрических колебаний заданных формы и частоты. Форма электрических колебаний может быть различной. Генераторы, формирующие синусоидальные колебания, называются генераторами синусоидальных, или гармонических колебаний. Если форма колебаний отличается от синусоидальной (прямоугольные, треугольные, пилообразные и т.д.), то такие генераторы называются импульсными, или релаксационными.
По принципу управления генераторы разделяются на две группы – генераторы с самовозбуждением (автогенераторы) игенераторы с внешним ( независимым) возбуждением. Последние, по существу, являются усилителями мощности высокой частоты, работающими на резонансную нагрузку и здесь рассматриваться не будут.
Схема автогенератора обычно содержат усилитель, охваченный обратной связью. Для построения автогенератора синусоидальных колебаний элементы схем либо усилителя, либо ОС должны обладать явно выраженными частотными свойствами. Наиболее часто используются два типа усилительных схем – с резонансными (колебательными) контурами и с резистивно-емкостными цепями. Автогенераторы, выполненные на основе схемы резонансного усилителя, часто называют автогенераторами типа LC , а автогенераторы, построенные на основе схемы усилителя на RC цепях,– автогенераторами типа RC или RC генераторы. Генерирование колебаний с частотами меньше 15 – 20 кГц на резонансных LC контурах затруднено и неудобно из-за их громоздкости. В низкочастотном диапазоне широко используются генераторы типа RC . Они могут генерировать весьма стабильные синусоидальные колебания в сравнительно широком диапазоне частот от долей герца до сотен килогерц. Кроме того, они имеют малые габариты и массу. Конечно, наиболее полно преимущества генераторов типа RC проявляются в области низких частот.
Здесь мы будем рассматривать автогенераторы синусоидальных колебаний, построенные на основе RC цепей, которые нашли широкое применение в устройствах электронной автоматики и вычислительной техники.
2. Условия самовозбуждения
Возбуждение колебаний в RC генераторах обусловлено наличием в них обратной связи. При анализе ОС , проведенном в разделе 7, рассматривались «крайние точки», в которых обратную связь можно было охарактеризовать либо как отрицательную, либо как положительную. Не учитывалось, что коэффициент усиления усилителя и коэффициент передачи цепи обратной связи в общем случае являются величинами комплексными, т.е.
, (10.1)
где K ус иg – модули коэффициента усиления используемого усилителя и коэффициента передачи цепи ОС ,
j к и j g – фазовый сдвиг сигнала при прохождении через усилитель цепь ОС .
Поэтому коэффициент усиления схемы с ОС (генератора) должен быть представлен в виде:
. (10.2)
Самовозбуждение схемы произойдет, когда коэффициент усиления K г будет стремиться к бесконечности, т.е. когда знаменатель последнего выражения стремится к нулю:
(10.3)
Последнее равенство будет иметь место только при выполнении двух условий: нулю должны быть равны как мнимая, так и действительная его части. Так как ни K ус ниg не равны нулю, то выполнение условий может быть реализовано только за счет элементов выражения, содержащих фазовые сдвиги.
Первое условие можно получить, приравняв нулю мнимую часть. Мнимая часть равенства (10.3) может быть равна нулю, когда sin ( j K + j g ) = 0 , что возможно при условии:
j K + j b = n p . (10.4)
где n – любое целое число.
Приравняв нулю действительную часть равенства (10.3), получаем:
(10.5)
При значениях суммарного фазового сдвига, соответствующего (10.4), со s ( j K + j g ) может принимать значения либо минус, либо плюс 1 . В первом случае нарушается выполнение равенства (10.5), во втором – может быть выполнено, если
K g = 1. (10.6)
Условие, соответствующее (10.6), носит название баланса амплитуд. Как было показано, для его выполнения необходимо получить такие фазовые сдвиги, при которых их синус был равен нулю, а косинус – плюс 1. Это возможно при четном числе n , т.е.
j K + j b = 2 p n , (10.7)
Условие, соответствующее (10.7), носит название баланса фаз . Условие баланса фаз показывает, что для самовозбуждения усилителя в схеме должна быть введена положительная обратная связь. Условие баланса амплитуд показывает, что для существования автоколебательного процесса ослабление сигнала, вносимое цепью обратной связи, должно компенсироваться усилителем. Для возбуждения гармонических колебаний, необходимо, чтобы условие баланса фаз и условие баланса амплитуд выполнялись только на одной (заданной) частоте. Поэтому в генераторе синусоидальных колебаний необходимо обеспечить частотно-избирательный характер или коэффициента усиления усилителя, или коэффициента передачи цепи обратной связи.
Процесс развития и установления колебательного процесса в схеме генератора можно пояснить с помощью графических построений, выполняемых на амплитудных характеристиках усилителя и цепи обратной связи. На рисунке 10.1 представлены зависимости выходного напряжения от входного Uвых = f (Uвх ) этих элементов, которая получила наименование колебательной характеристики автогенератора.
На этом рисунке изображены амплитудная характеристика (К ) используемого в генераторе усилителя и прямая линия, выражающая зависимость коэффициента передачи (g ) цепи обратной связи. Первая – нелинейна (см. раздел 3), вторая – линейна, т.к. цепь ОС обычно не содержит нелинейных элементов.
Рисунок 10.1. Колебательная характеристика автогенератора
Если в начальный момент K g > 1 , то появившееся по какой-либо причине (например, при включении источника питания схемы) на входе усилителя малое напряжение Uвх1 усиливается в K раз усилителем, ослабляется в g раз цепью обратной связи и поступает на вход усилителя в той же фазе, но с большей амплитудой Uвх2 . Амплитуда сигнала на выходе растет. По мере роста амплитуды выходного напряжения генератора коэффициент усиления усилителя K начинает уменьшаться, так как, (см. раздел 5) при больших входных напряжениях амплитудная характеристика усилителя насыщается. Как только произведение K g установится равным единице, амплитуда выходного напряжения фиксируется на постоянном уровне (точка А ).
В соответствии со сказанным, в процессе функционирования генератора можно выделить два этапа: этап возбуждения генератора и этап стационарного режима, что изображено на рисунке 10.2.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--