Учебное пособие: Графический метод решения химических задач

w(K2 CO3 )=(4.35/10)•100%

w(K2 CO3 )=43.5%/

Ответ: массовая доля карбоната натрия равна 56,5%, массовая доля карбоната калия равна 43,5%.

Задачи для самостоятельного решения

Задача 3

Смесь железа и цинка массой 12,1 г обработали избытком раствора серной кислоты. Для сжигания полученного водорода необходимо 2,24л кислорода (давление 135,6 кПа, температура – 364К). Найдите массовую долю железа в смеси.

Задача 4

Смесь метиловых эфиров уксусной кислоты и пропионовой кислоты массой 47,2г обработали 83,4мл раствора гидроксида натрия с массовой долей 40% (плотность 1,2г/мл). Определите массовые доли эфиров ( в %) в смеси, если известно, что гидроксид натрия, оставшийся после гидролиза эфиров, может поглотить максимально 8,96л оксида углерода (IV).

Эти задачи можно решать и другими способами, но этот способ решения задач по химии способствует развитию логического мышления, даёт возможность показать взаимосвязь математики и химии, формирует умение составлять и применять алгоритмы последовательности действий при решении, дисциплинирует и направляет деятельность на правильное использование физических величин и корректное проведение математических расчётов.

Задача 1 . Рассчитайте массы растворённого вещества и растворителя, которые необходимо взять для приготовления 150 г 20%-ного раствора.

Решение задачи начинаем с построения системы координат. Конечно, удобнее использовать специальную миллиметровую бумагу, но и обычный тетрадный лист в клетку позволяет получить ответ с достаточной точностью. На оси х откладываем массу раствора 150 г, на оси у — 100% (рис. 1). Строя перпендикуляры из этих точек, находим точку их пересечения. Соединяем её прямой линией с точкой начала координат. Полученный отрезок является основой для решения задачи.

Затем на оси у находим точку, соответствующую 20%, восстанавливаем из неё перпендикуляр до пересечения с отрезком, а из точки пересечения опускаем перпендикуляр на ось х. Это ответ задачи. О т в е т: 30 г.

Задача 2. К 150 г 20%-ного раствора соли добавили 30 г соли. Определите массовую долю соли в полученном растворе.

Начало решения аналогично решению задачи 1: для исходного раствора находим массу растворённого вещества (30 г) (рис. 2). Затем строим новый отрезок для нового раствора, полученного в результате добавления соли к исходному. На оси х от точки, соответствующей массе исходного раствора, откладываем вправо 30 г (масса добавленной соли), это масса полученного раствора. Восстанавливаем из неё перпендикуляр до пересечения с прямой, проходящей через отметку 100% на оси у. Точку их пересечения соединяем с началом координат — получаем отрезок, соответствующий новому раствору


(показан пунктирной линией). На оси х от точки, показывающей массу соли в первом растворе, откладываем вправо 30 г (масса добавленной соли) и получаем массу соли во втором растворе. Восстанавливаем из неё перпендикуляр до пересечения с пунктирным отрезком, а из точки пересечения — перпендикуляр на ось у. Значение^ равно массовой доле соли во втором растворе. О т в е т: 33%.

Задача 3. Из 170 г 9%-ного раствора выпарили 50 г растворителя. Определите массовую долю соли в полученном растворе.

Построив отрезок, соответствующий начальному раствору, находим массу растворённого в нём вещества (рис. 3). Затем от массы первого раствора откладываем влево 50 г — получаем массу второго раствора. Восстанавливаем из этой точки перпендикуляр до пересечения с прямой, проходящей через точку 100%, точку пересечения соединяем с началом координат. Мы построили отрезок (обозначен пунктиром) для второго раствора. На него восстанавливаем перпендикуляр из точки, показывающей массу соли в исходном растворе, а из точки пересечения, в свою очередь, опускаем перпендикуляр на ось, где находим ответ задачи. Ответ: 13%.


Задача 4. Насыщенный при 70 °С раствор имеет массу 300 г и массовую долю растворённого вещества 30%. При его охлаждении до 20 °С выпал осадок массой 30 г. Определите массовую долю соли из полученном растворе.

Строим отрезок для начального раствора и находим для него на оси х точку, соответствующую массе растворённого вещества (рис. 4). Затем от массы первого раствора влево откладываем 30 г и находим массу нового раствора, восстанавливаем из этой точки перпендикуляр до пересечения с линией 100%, полученную точку соединяем с началом координат. Получили отрезок для второго раствора (обозначен пунктиром). От массы растворённого вещества в первом растворе на оси масс откладываем влево 30 г - получаем массу соли во втором растворе. Из соответствующей ей точки восстанавливаем перпендикуляр на пунктирный отрезок и из полученной точки пересечения — перпендикуляр на ось процентов, где и находим ответ задачи. Ответ: 22%.

Задача 5. Определите массовую долю вещества в растворе, полученном в результате сливания 120 г 16%-ного раствора с 60 г 20%-ного раствора.

Строим отрезок, соответствующий первому раствору, и находим массу растворённого в нём вещества (рис. 5). Из точки, обозначающей массу первого раствора, проводим вспомогательную ось у для построения отрезка (обозначен пунктиром), характеризующего второй раствор, и нахождения с его помощью массы растворённого в нём вещества. После проведения указанных операций на оси масс

имеются два отрезка, соответствующие массам исходных растворов. Так как начало второго отрезка совпадает с концом первого, то их общая длина соответствует массе третьего раствора. Соединив точку пересечения перпендикуляров, проходящих через точки 100% и 180 г (на графике она уже получена при построении отрезка для второго раствора), с началом основной системы координат, получаем отрезок для третьего раствора (обозначен серой линией ).

Кроме этого, на оси х отложены два отрезка, соответствующие массам растворённых в исходных растворах веществ. Переместим отрезок, равный массе растворённого во втором растворе вещества, из вспомогательной системы координат в основную, отложив его от конца отрезка, равного массе растворённого вещества в первом растворе. Полученный суммарный отрезок соответствует массе растворённого вещества в третьем растворе. Остаётся восстановить из его конечной точки перпендикуляр на отрезок, характеризующий третий раствор, а из полученной точки пересечения провести перпендикуляр на ось процентов. Найденная на ней точка даёт искомый ответ задачи. О т в е т: 17%.

Конечно, данный способ решения не может рассматриваться как замена алгебраического метода решения, но он позволяет разнообразить деятельность учащихся, сделать её более интересной. Каждый ученик может выбрать тот метод решения, который ему наиболее понятен, что повышает эффективность образовательного процесса.

К-во Просмотров: 654
Бесплатно скачать Учебное пособие: Графический метод решения химических задач