Учебное пособие: Химия и технология платиновых металлов

Буслаева Татьяна Максимовна

Химия и технология платиновых металлов

(Лекционный курс)

Москва – 1999 г.


Введение

Платиновые металлы – это элементы VIII группы Периодической системы Д.И. Менделеева. Их шесть: в пятом большом периоде – так называемые «легкие» платиновые металлы – рутений (Ru), родий (Rh), палладий (Pd) с порядковыми номерами, соответственно, 44, 45, 46 и в шестом – «тяжелые» осмий (Os), иридий (1г), платина (Pt), имеющие порядковые номера 76, 77, 78. Вместе с золотом и серебром металлы платиновой группы образуют семейство благородных металлов – благородных потому, что они отличаются низкой химической активностью, высокой коррозионной стойкостью, а изделия из них имеют красивый, благородный, внешний вид.

Платина (от исп. «plata» – серебро) – элемент, давший название всей рассматриваемой группе металлов. Она известна человечеству с незапамятных времен: следы платины обнаруживаются еще в древнеегипетских инкрустациях. Однако первое упоминание о платине в архивах относится к 1735 г., а первое описание выполнено испанским офицером, физиком и математиком Доном Антонио де Ульоа в 1748 г. К этому же периоду относится начало исследований доставленных из Южной Америки, с территории нынешней Колумбии, в Европу образцов платиновой руды («сырой» платины) и попытки получения ковкого металла. Например, в те годы уже была обнаружена способность платины растворяться в «царской водке». В 1803–1804 гг. англичанин В.Х. Волластон обнаружил в указанном растворе следующие два металла платиновой группы: палладий (в честь астероида Паллас) и родий («rodon» – розовый, соли родия имеют розовую окраску). Из нерастворимого остатка после растворения «сырой» платины в «царской водке» другой английский исследователь С. Теннант выделил еще два платиновых металла: иридий («iridios» – радуга) и осмий («osmh» – запах, летучий оксид осмия имеет неприятный запах).

И, наконец, в 1844 г. был открыт последний из элементов платиновой группы – рутений (лат. «Ruthenia» – Россия). Автор этого открытия – профессор химии Казанского университета Карл Карлович Клаус. Открытие этого элемента именно в России во многом было предопределено тем обстоятельством, что двумя десятилетиями ранее на Урале были разведаны богатейшие залежи самородной платины, и к 1835 г. Россия уже чеканила платиновые монеты. Это свидетельствовало о высоком (для того времени) уровне развития хи-мической науки и инженерной мысли.

Содержание платиновых металлов в земной коре (кларк) оценивается, по данным разных авторов, на уровне 10-6 – 10-9 %% для палладия и 10-6 – 10-11 %% – для остальных платиновых металлов. Собственно минералы платиновых металлов не образуют месторождений, перспективных для промышленной переработки. Минералы платины и палладия преимущественно вкраплены в основные рудообразующие сульфидные минералы меди, никеля, железа – халькопирит, пентландит, пирротин и др. Рутений, родий, осмий и иридий, которые называются редкими платиновыми металлами, как правило, замещают атомы цветных металлов и железа в кристаллических решетках их минералов. Таким образом, платиновые металлы являются не только редкими, но и рассеянными элементами.

По запасам платиновых металлов, которые оцениваются суммарно в 56 тыс. тонн, Россия занимает второе после Южно-Африканской республики место в мире. Главным источником платиновых металлов в России являются сульфидные медно-никелевые руды полуострова Талнах.

При переработке медно-никелевых руд металлы платиновой группы следуют за никелем и медью по всем технологическим цепочкам, концентрируясь в черновом (неочищенном) никеле и черновой меди. Если в исходной руде содержание платиновых металлов колеблется от десятых долей грамма до нескольких граммов, то в черновом никеле, например, ориентировочно присутствует 350 г./т платины и 750 г./т палладия. На заключительном этапе – в процессе электролиза чернового металла (он является катодом) – платиновые металлы, а также золото и серебро оседают на дно электролизной ванны в виде шлама. Именно электролитные шламы служат непосредственным источником платиновых металлов. Из них получают богатые платиновые концентраты, а затем в процессе аффинажа и сами металлы.

Наряду с первичным, перерабатываются также различные виды вторичного (отработанные катализаторы, электронный лом, отходы фото- и кинопленки, бракованные изделия и т.п.) и техногенного (шлаки, кеки, пыли) сырья. Их доля в общем объеме перерабатываемого сырья неуклонно возрастает.

Производство платиновых металлов измеряется в тройских унциях (1 тр. унция = 31.1 г.), а цены – в долларах за тройскую унцию. Следует отметить, что независимо от абсолютного значения цены, платина всегда дороже золота. Самый дешевый из металлов платиновой группы – рутений (для сравнения: в 1996 г. при цене на платину порядка 400 долл. за тр. унцию, рутений стоил не более 1 долл./тр. унцию).

Металлы платиновой группы сочетают в себе самые разные свойства: термостойкость и пластичность, коррозионную устойчивость и свариваемость, отражательную и эмиссионную способность, тепло- и электропроводность и высокие магнитные характеристики. Некоторые из них отражены в табл. 1. Уникальными физическими и химическими свойствами обладают не только сами металлы, но и их соединения и материалы на их основе: сплавы, катализаторы, порошки, покрытия, оксидные пленки и др. Они играют важную роль в самых разных отраслях промышленности, в химии, анализе, катализе, биологии, медицине; незаменимы в электронике, радио» и электротехнике, химической и нефтеперерабатывающей отраслях, приборостроении, атомной и ракетной технике. Платиновые металлы обеспечивают гарантированно надежную работу вычислительных, измерительных, контролирующих приборов и устройств. Эффект от использования платиновых металлов, которые окружают нас буквально повсюду, переоценить практически невозможно. Платиновые металлы образуют валютный фонд государств.

Одним из наиболее удивительных свойств платиновых металлов является их способность катализировать различные химические процессы: гидрирования и дегидрирования, полимеризации и изомеризации, окисления и восстановления. Именно платине обязано своим появлением само введенное Берцелиусом понятие «катализ». С их участием организованы крупнотоннажные производства. Например, в производстве азотной кислоты на стадии окисления аммиака катализатором служит сетка из сплава платины и 5–10% родия; производство уксусной кислоты взаимодействием метилового спирта с оксидом углерода (реакция карбонилирования) осуществляется в присутствии карбонильного комплекса родия. Нет ни одного платинового металла, который не «сказал» бы своего веского слова в катализе. Потенциального использования ждут сотни каталитически активных комплексов Ru, Os, Ir, Rh.

Однако, пожалуй, самым ярким примером использования каталитических свойств металлов платиновой группы служит процесс очистки, или дожигания, выхлопных газов автомобилей. Наиболее эффективны трехфункциональные катализаторы, платино-палладиево-родиевые, которые позволяют одновременно устранить три токсичных компонента выхлопных газов: углеводороды, оксид углерода, оксид азота. При сжигании 1 тонны горючего, наряду с 40–50 кг СО и 0.3–5 кг NHз и углеводородов, выделяется от 12 до 24 кг оксидов азота. Реакции, приводящие к восстановлению оксидов азота, катализируются родием. Содержание родия в расчете на один фильтр для очистки выхлопов составляет 0.34 г. В настоящее время основная доля производимого родия расходуется в производстве автомобильных катализаторов: при общем объеме выпуска родия в 1995 г. в количестве 459 тыс. тр. унций, 450 – пошло на получение автомобильных катализаторов.

Открытие металлической проиводимости диоксида рутения RuO2 в 1962 г., поистине революционное, послужило толчком для проведения широкого круга исследований электрических свойств простых и смешанных оксидов элементов платиновой группы, а открытая позднее советскими учеными Н.М. Жаворонковым, В.Б. Лазаревым и И.С. Шаплыгиным корреляция между электронной конфигурацией и типом проводимости позволила осуществлять направленный синтез оксидных материалов с заданными свойствами. Без резистивных паст на основе оксидов рутения, которые нашли применение в тонкопленочных и толстопленочных гибридных интегральных схемах, прогресс электронной техники был бы просто немыслим.

Аналогичное явление произошло и с палладием. До 50‑х годов он применялся преимущественно как ювелирный металл (наряду с золотом, серебром и платиной) и компонент стоматологических сплавов. Далее началась новая эра в его использовании – в качестве проводящих паст на основе палладиевых и палладий-серебряных порошков, которые образуют токопроводящие дорожки электронных схем и внутренние электродные слои, а также выводы конденсаторов. На эти цели расходуется в наши дни без малого половина производимого палладия.

Соединения платиновых металлов обладают антимикробной и антивирусной активностью, а также антиканцерогенными свойствами. Комплекс дихлородиамминоплатина(II) цис-строения – [Pt(NH3 )2 Сl2 ] (цис-ДДП) внедрен в клиническую практику как эффективный препарат в химиотерапии рака. Разработки, выполненные в Московской государственной академии тонкой химической технологии им. М.В. Ломоносова, позволили предложить один из комплексов палладия(II) с гексаметилентетрамином (уротропином) для лечения особо опасных патогенных субвирусов – прионов, этой новой «чумы», надвигающейся на человечество.

Платиновые металлы имеют и общие сферы применения, и присущие лишь отдельно взятым металлам. Так, в химической промышленности, в электронике, электротехнике используются почти все металлы платиновой группы. В то же время никакие другие металлы не могут заменить иридий в производстве тиглей – контейнеров для получения лазерных и других кристаллических материалов. Иридий выдерживает чрезвычайно высокие температуры (табл. 1), которые требует процесс выращивания кристаллов; его применение исключает коррозию, способную загрязнить драгоценный расплав.

Самый редкий платиновый металл – осмий. Он производится ежегодно в крайне малых – килограммовых – количествах и расходуется преимущественно на выпуск сверхтвердых специальных сплавов, отличающихся повышенной стойкостью к истиранию, для производства компасных игл, осей, трущихся частей точных инструментов и, наконец, шариковых ручек. Классической областью применения осмия в виде тетраоксида OsO4 стала гистология, наука о тканях многоклеточных животных и человека, благодаря способности этого соединения при контактах с биологической тканью восстанавливаться на различных функциональных узлах клеток и окрашивать ее.

Таким образом, возможности платиновых металлов безграничны и неисчерпаемы.

1. Физические свойства платиновых металлов

Платиновые металлы в чистом виде представляют собой порошки различных оттенков серого цвета (порошок осмия – голубоватый). В компактном состоянии рутений – белый металл со слабым голубоватым отливом; родий – серебристо-белый; палладий – белый со слабосероватым отливом; осмий – голубовато-серый; иридий – белый; платина – белого цвета со слабым серым отливом. Представляет интерес система сплавов палладий-индий. Исходные компоненты этой системы – металлы белого цвета. сплавы же в зависимости от состава имеют окраску от лимонно-желтой до цвета червонного золота и розово-сиреневой.

Платиновые металлы тугоплавки и труднолетучи (табл. 1). Платина, палладий, родий, иридий кристаллизуются в гранецентрированной кубической решетке. Кристаллические решетки осмия и рутения – гексагональные с плотнейшей упаковкой. Температуры плавления и кипения металлов в триадах убывают слева направо – от рутения к палладию и от осмия к платине, и снизу вверх по вертикали в Периодической системе (табл. 1). Температуры плавления большинства платиновых металлов значительно превышают 1500 °С. Наиболее тугоплавки осмий и рутений, самый легкоплавкий – палладий. Самые тяжелые металлы (среди платиноидов и вообще всех элементов Периодической системы Д.И. Менделеева) – иридий и осмий.

Среди переходных металлов платиновые имеют наиболее низкое значение величины удельного электросопротивления (табл. 1). В небольших интервалах температурная зависимость электросопротивления близка к линейной, однако в области высоких температур характерно существенное отклонение от линейной зависимости.

Все платиновые металлы являются парамагнетиками. Их магнитная восприимчивость при комнатной температуре изменяется в достаточно широком интервале, причем наименьшую магнитную восприимчивость (0.0690·10-9 м3 /кг) имеет осмий, наибольшую (5.231·10-9 м3 /кг) – палладий. Чистый палладий – почти ферромагнитный металл с очень высокой магнитной восприимчивостью и легкой поляризуемостью или намагничиванием. Восприимчивость рутения, осмия, родия и иридия монотонно растет с увеличением температуры.

Основными оптическими особенностями металлов платиновой группы являются большая отражательная способность в широком спектральном интервале (металлический блеск) и большой коэффициент поглощения, которые обусловлены наличием большого числа свободных электронов. Наиболее высоким коэффициентом отражения в видимой области обладает родий (от 68 до 98% в зависимости от длины волны). Отражательная способность платиновых металлов имеет практическое значение. Высокая коррозионная стойкость и отсутствие пленок на поверхности обусловливает стабильность отражения и обеспечивает широкое применение родия и палладия в качестве технических зеркал.

Таблица 1 . Свойства платиновых металлов
Свойство Ru Rh Pd Os Ir Pt
Атомная масса 101.07 102.9 106.4 190.2 192.22 195.09
Атомный объем, см3 /моль 8.177 8.286 8.859 8.419 8.516 9.085
Электронная конфигурация 4d7 5s1 4d8 5s1 4d10 5s1 5d6 6s2 5d7 6s2 5d9 6s1
Характерные степени окисления +3, +4 +3 +2 +4, +6 +3, +4 +2, +4
Ионный радиус, нм 0.062 0.065 0.064 0.065 0.065 0.064
Первый потенциал ионизации, В 7.364 7.46 8.33 8.7 9.0 9.0
Тип кристаллической решетки г.п.у.[1] г.ц.к.[2] г.ц.к. г.п.у. г.ц.к. г.ц.к.
Плотность при 20°С, г/см3 12.45 12.41 12.02 22.61 22.65 21.45
Температура плавления, °С 2334 1960 1554 3050 2447 1769
Температура кипения, °С 4080 3700 2900 5020 4500 3800
Нормальный окислительный потенциал по отношению к потенциалу нормального водородного электрода при 25°С +0.45 +0.8 +0.987 +0.85 +1.15 +1.2
Удельное электросопротивление при 300К, мкОм·см 7.55 5.01 10.804 10.59 5.33 10.81
Упругие свойства при 300К, ГПа 485 386 124 570 538 173

Прочностные характеристики – твердость, временное сопротивление, предел текучести, относительное удлинение, сужение – являются наиболее распространенными и широко применяемыми на практике характеристиками свойств металлов. Осмий, рутений, иридий и родий – очень тверды и хрупки. Наибольшей твердостью обладает осмий, хотя и он может быть растерт в порошок. Палладий и платина обладают самыми низкими упругими характеристиками (табл. 1), сравнительно низкими твердостью и временным сопротивлением. Эти металлы легко деформируются, они очень пластичны и могут подвергаться горячей или холодной обработке; их можно расплющить до тонкой фольги. Платину можно вытянуть в проволоку диаметром 0.0013 мм. Особенно легко обрабатывается механически мягкий и пластичный палладий. Рсдий и иридий более тверды и хрупки, чем платина и палладий. Металлический родий можно прокатать в полосу или проковать в проволоку диаметром до 1 мм. Иридий поддается обработке лишь при температуре 600–750 о С. Обычно рутений с трудом поддается обработке, но при 1050–1250 °С его можно прокатать в полоски толщиной 0.5 мм, а затем при комнатной температуре – до толщины 0.08 мм. Осмий не поддается механической обработке. Меньшая пластичность рутения и осмия, вероятно, обусловливается гексагональной решеткой и примесями. С повышением температуры повышается пластичность всех металлов.

Отличительной особенностью платиновых металлов является их способность адсорбировать на поверхности некоторые газы, особенно водород и кислород. Склонность к адсорбции значительно возрастает у металлов, находящихся в тонкодисперспом и коллоидном состояниях. Вследствие способности к абсорбции газов металлы платиновой группы, главным образом палладий, платина, рутений, применяются в качестве катализаторов при реакциях гидрогенизации и окисления. Каталитическая активность их увеличивается при использовании черни.

Наибольшая способность к адсорбции водорода присуща палладию: один объем палладия в состоянии адсорбировать при комнатной температуре свыше 1000 объемов водорода. Предварительно адсорбированные пары воды увеличивают адсорбцию палладием газов. С повышением температуры растворимость водорода в палладии, в отличие от растворимости в других металлах, быстро понижается.

Водород и дейтерий способны диффундировать через нагретую толстую палладиевую перегородку. Это специфическое свойство палладия, используемое для получения сверхчистого водорода.

В незначительных количествах водород растворяется во всех платиновых металлах. Платина быстро адсорбирует водород. В нагретом состоянии платина обладает высокой проницаемостью по отношению к водороду, причем скорость диффузии и растворимость водорода значительно увеличиваются с увеличением температуры. Однако растворимость водорода в платине даже при высоких температурах мала. Адсорбированный водород может быть удален при нагревании до 100 °С в вакууме. Легче всего он удаляется из палладия, труднее – из платины и особенно трудно из иридия.

Платиновая чернь довольно сильно поглощает кислород: 100 объемов кислорода на 1 объем платиновой черни. Палладий и другие металлы поглощают кислород значительно меньше.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 252
Бесплатно скачать Учебное пособие: Химия и технология платиновых металлов