Учебное пособие: Математическая статистика

Что значит «по выборке сделать вывод о распределении»? Распределение характеризуется функцией распределения, плотностью или таблицей, набором числовых характеристик — , , и т.д. По выборке нужно уметь строить приближения для всех этих характеристик.

2 .2 Выборочное распределение

Рассмотрим реализацию выборки на одном элементарном исходе — набор чисел , , . На подходящем вероятностном пространстве введем случайную величину , принимающую значения , , с вероятностями по (если какие-то из значений совпали, сложим вероятности соответствующее число раз). Таблица распределения вероятностей и функция распределения случайной величины выглядят так:

Распределение величины называют эмпирическим или выборочным распределением. Вычислим математическое ожидание и дисперсию величины и введем обозначения для этих величин:

Точно так же вычислим и момент порядка

В общем случае обозначим через величину

Если при построении всех введенных нами характеристик считать выборку , , набором случайных величин, то и сами эти характеристики — , , , , — станут величинами случайными. Эти характеристики выборочного распределения используют для оценки (приближения) соответствующих неизвестных характеристик истинного распределения.

Причина использования характеристик распределения для оценки характеристик истинного распределения (или ) — в близости этих распределений при больших .

Рассмотрим, для примера, подбрасываний правильного кубика. Пусть — количество очков, выпавших при -м броске, . Предположим, что единица в выборке встретится раз, двойка — раз и т.д. Тогда случайная величина будет принимать значения 1 , , 6 с вероятностями , , соответственно. Но эти пропорции с ростом приближаются к согласно закону больших чисел. То есть распределение величины в некотором смысле сближается с истинным распределением числа очков, выпадающих при подбрасывании правильного кубика.

Мы не станем уточнять, что имеется в виду под близостью выборочного и истинного распределений. В следующих параграфах мы подробнее познакомимся с каждой из введенных выше характеристик и исследуем ее свойства, в том числе ее поведение с ростом объема выборки.

2 .3 Эмпирическая функция распределения, гистограмма

Поскольку неизвестное распределение можно описать, например, его функцией распределения , построим по выборке «оценку» для этой функции.

Определение 1.

Эмпирической функцией распределения, построенной по выборке объема , называется случайная функция , при каждом равная

Напоминание: Случайная функция

называется индикатором события . При каждом это — случайная величина, имеющая распределение Бернулли с параметром . почему?

Иначе говоря, при любом значение , равное истинной вероятности случайной величине быть меньше , оценивается долей элементов выборки, меньших .

Если элементы выборки , , упорядочить по возрастанию (на каждом элементарном исходе), получится новый набор случайных величин, называемый вариационным рядом :

Здесь

Элемент , , называется -м членом вариационного ряда или -й порядковой статистикой .

Пример 1.

Выборка:

Вариационный ряд:

Рис. 1. Пример 1

Эмпирическая функция распределения имеет скачки в точках выборки, величина скачка в точке равна , где — количество элементов выборки, совпадающих с .

К-во Просмотров: 228
Бесплатно скачать Учебное пособие: Математическая статистика