Учебное пособие: Математическая статистика

Другой характеристикой распределения является таблица (для дискретных распределений) или плотность (для абсолютно непрерывных). Эмпирическим, или выборочным аналогом таблицы или плотности является так называемая гистограмма .

Гистограмма строится по группированным данным. Предполагаемую область значений случайной величины (или область выборочных данных) делят независимо от выборки на некоторое количество интервалов (не обязательно одинаковых). Пусть , , — интервалы на прямой, называемые интервалами группировки . Обозначим для через число элементов выборки, попавших в интервал :

(1)

На каждом из интервалов строят прямоугольник, площадь которого пропорциональна . Общая площадь всех прямоугольников должна равняться единице. Пусть — длина интервала . Высота прямоугольника над равна

Полученная фигура называется гистограммой.

Пример 2.

Имеется вариационный ряд (см. пример 1):

Разобьем отрезок на 4 равных отрезка. В отрезок попали 4 элемента выборки, в — 6, в — 3, и в отрезок попали 2 элемента выборки. Строим гистограмму (рис. 2). На рис. 3 — тоже гистограмма для той же выборки, но при разбиении области на 5 равных отрезков.

Рис. 2. Пример 2 Рис. 3. Пример 2

Замечание 1.

В курсе «Эконометрика» утверждается, что наилучшим числом интервалов группировки («формула Стерджесса») является .

Здесь — десятичный логарифм, поэтому , т.е. при увеличении выборки вдвое число интервалов группировки увеличивается на 1. Заметим, что чем больше интервалов группировки, тем лучше. Но, если брать число интервалов, скажем, порядка , то с ростом гистограмма не будет приближаться к плотности.

Справедливо следующее утверждение:

Если плотность распределения элементов выборки является непрерывной функцией, то при так, что , имеет место поточечная сходимость по вероятности гистограммы к плотности.

Так что выбор логарифма разумен, но не является единственно возможным.

Заключение

Математическая (или теоретическая) статистика опирается на методы и понятия теории вероятностей, но решает в каком-то смысле обратные задачи.

Если мы наблюдаем одновременно проявление двух (или более) признаков, т.е. имеем набор значений нескольких случайных величин — что можно сказать об их зависимости? Есть она или нет? А если есть, то какова эта зависимость?

Часто бывает возможно высказать некие предположения о распределении, спрятанном в «черном ящике», или о его свойствах. В этом случае по опытным данным требуется подтвердить или опровергнуть эти предположения («гипотезы»). При этом надо помнить, что ответ «да» или «нет» может быть дан лишь с определенной степенью достоверности, и чем дольше мы можем продолжать эксперимент, тем точнее могут быть выводы. Наиболее благоприятной для исследования оказывается ситуация, когда можно уверенно утверждать о некоторых свойствах наблюдаемого эксперимента — например, о наличии функциональной зависимости между наблюдаемыми величинами, о нормальности распределения, о его симметричности, о наличии у распределения плотности или о его дискретном характере, и т.д.

Итак, о (математической) статистике имеет смысл вспоминать, если

· имеется случайный эксперимент, свойства которого частично или полностью неизвестны,

· мы умеем воспроизводить этот эксперимент в одних и тех же условиях некоторое (а лучше — какое угодно) число раз.

Список литературы

1. Баумоль У. Экономическая теория и исследование операций. – М.; Наука, 1999.

2. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1995.

3. Боровков А.А. Математическая статистика. М.: Наука, 1994.

4. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - СПБ: Издательство «Лань», 2003.

5. Коршунов Д.А., Чернова Н.И. Сборник задач и упражнений по математической статистике. Новосибирск: Изд-во Института математики им. С.Л.Соболева СО РАН, 2001.

6. Пехелецкий И.Д. Математика: учебник для студентов. - М.: Академия, 2003.

К-во Просмотров: 227
Бесплатно скачать Учебное пособие: Математическая статистика