Учебное пособие: Методы и способы решения задач

При изучении сложения дробей учащимся необходимо предоставить возможность поработать с наглядным материалом, отражающим свойства дробей. В данном случае используются задания, схожие с теми, что приведены в карточке № 7. Здесь тонкие линии помогают понять, каким будет наименьший общий знаменатель и что он наглядно означает. Подсказывается и то, какой будет дробь, приведенная к новому знаменателю. Попрактиковавшись в выполнении таких упражнений, ученик сможет наглядно оценивать результат сложения двух дробей, делая необходимые прикидки. Для слабого ученика такая работа полна смысла: опираясь на нее, можно вводить алгоритм сложения дробей с разными знаменателями, который теперь не будет представляться ребенку непонятной процедурой. Параллельно со сложением на наглядном уровне изучается и операция вычитания дробей. По карточке № 7 целесообразно предложить школьникам найти разность дробей:

Почти традиционно правило умножения обыкновенных дробей объясняют на примере нахождения площади прямоугольника, длины сторон которого выражаются данными дробями. Получив с одного примера "заветное" правило, начинают эксплуатировать его, находя произведения дробей. Поспешность и формализм проявляются затем на качестве знаний.

Для того чтобы ученик осознал правило умножения дробей, связал его с наглядным образом, полезно предложить ему следующие упражнения:


На карточке N 8 единичные квадраты разбиты на равные прямоугольники. Найдите, какую часть от единичного составляет маленький прямоугольник. Найдите, какую часть от единичного квадрата А (Д С, Д Е, Р) составляет прямоугольник, выделенный жирной линией.

Найдите, какую часть прямоугольника, выделенного в каждой из фигур А, В, С, Д Е, Р, составляет маленький прямоугольник.

По рисункам А, В, С, Д Е, Р из карточки объясните смысл умножения дробей, записанных под каждой из фигур.

Внимание учеников следует обратить на то, что в квадрате Е жирными линиями выделены прямоугольники, содержащие по три маленьких прямоугольника. Таких прямоугольников в квадрате Е 14, а в заштрихованной фигуре — 5. Дробь ут, которая 3 5 является значением произведения у ' и > получилась 15 из дроби после сокращения на 3, о чем говорит целое число прямоугольников 3х 1, выделенных жирными линиями.

Для слабых и средних учеников окажутся полезными упражнения на запись в виде неправильной дроби числа, имеющего целую и дробную части, упражнения на деление дроби на целое число.

Таким образом, приведенные карточки позволяют при изучении математики обращаться к природе вещей, находить возможность включения ребенка в практическую деятельность, в процессе которой у него формируются образы, помогающие осваивать изучаемые абстракции.


Список использованной литературы

1. Болтянский В.Г. Использование логической символики при работе с определениями. // Математика в школе. -- №5, 2003.

2. Виленкин Н.Я., Абайдулин С.К., Таварткиладзе Р.К. Определение в школьном курсе математики и методика работы над ними. // Математика в школе. - №4, 2004.

3. Волович М.Б. Обыкновенные дроби. Проценты. /Пособие для учителя, ученика и его родителей. - М.: Аквариум, 2007.

4. Котов А.Я. Вечера занимательной математики. Пособие для учителей. - М: Просвещение, 2000

5. Ситникова Т.В. Приемы активизации учащихся 5-6 классов, //Математика в школе, №2, 2003, с.24

К-во Просмотров: 255
Бесплатно скачать Учебное пособие: Методы и способы решения задач