Учебное пособие: Методы переноса генетического материала в клетки млекопитающих
0,7 мМ дигидрофосфата натрия
3.3 Перенос хромосом
Процесс переноса хромосом в этом случае очень напоминает описываемый в методе DMGT. Хромосомы осаждают на поверхности клеток хлоридом кальция, и спустя несколько часов клетки обрабатывают реагентом, способным перфорировать мембраны. Здесь тоже важно использовать пластиковые пробирки и пипетки. Последовательность действий, которая приведена ниже, разработана Нельсоном.
1. За день перед проведением трансфекции высейте по 5Х Х105 клеток на 10 чашек диаметром 9 см. Используйте низкофосфатную среду, например DMEM.
2. Ресуспендируйте 108 хромосом в 9 мл раствора для трансфекции.
3. Медленно добавьте к хромосомам 1 мл 1,25 М раствора СаС12 , одновременно продувая воздух через суспензию хромосом.
4. Инкубируйте 20–30 мин при комнатной температуре для: образования смеси фосфат кальция – ДНК.
5. Добавьте по 1 мл этой смеси к среде в каждую чашку с реципиентными клетками. Инкубируйте клетки с хромосомами 4–6 ч в увлажняющем инкубаторе при 37 °С.
6. Удалите среду и добавьте 10 мл отмывочного раствора.
7. Удалите отмывочный раствор и обработайте клетки 1 мл среды для глицеринового шока в течение 4 мин при комнатной температуре.
8. Отмойте клетки 3 раза промывочным раствором и инкубируйте в течение ночи в неселективной среде для роста клеток.
9. Через 24 ч поменяйте среду на селективную. Меняйте среду на свежую каждые 3–4 дня.
10. Колонии появятся на 14–21-й день.
3.4 Предварительная селекция
При использовании DMGT донорная геномная ДНК обычно переносится вместе с плазмидой, кодирующей доминантный селективный маркер. Предварительная селекция, выявляющая включение плазмидной ДНК, позволяет получить 100-кратное обогащение клетками, содержащими интересующий нас клеточный ген. Аналогичный прием может быть использован и в CMGT. Для проведения котрансфекции необходимое количество плазмидной ДНК добавляют к суспензии хромосом перед преципитацией хлоридом кальция. Обычно мы добавляем плазмидную ДНК в количестве, достаточном для достижения соотношения 20:1. Селекцию проводим спутся 24 ч после хромосомной трансфекции.
3.5 Возможные ошибки и варианты методики
В литературе описано множество методов выделения хромосом из клеток, блокированных в метафазе. Процедуры очистки тоже разнообразны. Одни из них позволяют получить высокоочищенные препараты, другие–грубую фракцию хромосом, загрязненную разными компонентами клетки. Мы предпочитаем использовать для проведения трансфекции именно такие грубые препараты, во-первых, потому что их получение занимает мало времени, а во-вторых, потому что хромосомы при этом оказываются наименее разрушенными.
Анализ, проведенный Льюисом, показал, что существует линейная зависимость частоты CMGT-трансфекции от дозы донорных хромосом. В большинстве последующих экспериментов исследователи старались ввести в клетку как можно больше хромосом. Однако на практике количество хромосом, которое можно получить, ограничено. Основное препятствие в использовании очень большого количества донорных клеток – это высокая вязкость суспензии хромосом, которая способствует их агглютинации. Вот почему мы добавляем не более 20 хромосом на одну реципиентную клетку. Помимо механического воздействия для получения препарата хромосом можно применять и химическую обработку, включая использование мягких детергентов, таких, как дигитонин.
Исходя из нашего опыта, можно заключить, что результаты трансфекции воспроизводимы. В некоторых случаях может оказаться необходимым оптимизировать условия «шока», варьируя концентрацию глицерина и время инкубации. Обсуждение способа трансфекции с помощью осаждения фосфатом кальций приводится в разд. 6.
При использовании метода CM.GT образуются реципиентные клетки, содержащие фрагменты донорных хромосом: в некоторых случаях они встраиваются в геном реципиента, иногда реплицируются самостоятельно. Невозможно выделить параметр, контролирующий размеры передаваемого фрагмента, и в большинстве экспериментов получаются клоны, содержащие донорный материал в широком диапазоне. Мы детально анализировали введенные фрагменты во всех случаях. В них наблюдались перестройки: это либо внутренние делеции, либо переобогащение альфоидными последовательностями из области центромеры. Внутренние делеции описаны также другими авторами.
4 . Перенос генов, опосредованный ДНК
4.1 Введение
В настоящее время разработано большое количество методов для введения клонированных последовательностей ДНК в клетки млекопитающих. Среди них преципитация фосфатом кальция или DEAE-декстраном, электропробой, использование инактивированных вирусов и слияние прокариотических и дрожжевых протопластов с клетками млекопитающих. Наиболее широкое распространение получила преципитация фосфатом кальция. Точный механизм захвата ДНК, ее включения в реципиентную клетку непонятен, однако известно, что лишь небольшое количество клеток в культуре реципиентов включают ДНК. По аналогии с бактериальной генетикой эти клетки получили название «компетентных». Количество включаемой ДНК – важнейшая характеристика используемой клеточной линии. Мышиные L-клетки включают несколько миллионов пар оснований экзогенной ДНК, человеческие фибробласты – только часть этого количества. Было проведено несколько экспериментов по выявлению максимальных размеров ДНК, передаваемой неповрежденной. Обычно не удается перенести интактную ДНК, размеры которой превышают 100 т. п. н. Неизвестно, зависит ли это от свойств клеток-реципиентов или определяется трудностями в получении таких больших фрагментов ДНК интактными. Недавние успехи в получении высокомолекулярных фрагментов ДНК позволяют проанализировать оба этих варианта.
4.2 Трансфекция ДНК с использованием фосфата кальция
Таблица. Растворы для DMGT
Среда для роста клеток | Используйте низкофосфатную среду для роста |
клеток, такую, как DMEM | |
Селективная среда | |
2хНереэ-буфер | рН очень важен и должен быть проверен, если |
раствор длительно хранился | |
рН 7,1±0,05 | 50 мМ Hepes |
290 мМ хлорида натрня | |
1,5 мМ фосфата натрия (равное количество гидро- | |
и дигидрофосфата) | |
1XHBS | 25 мМ Hepes |
145 мМ хлорида натрия | |
0,75 мМ фосфата натрия (равное количество гидро- | |
1,25 М хлорид кальция | и дигидрофосфата) |
Раствор для глицерино- | 15% глицерина в1XHBS |
вого шока |
4.3 Совместный перенос и предварительная селекция
Известно, что компетентные клетки способны включать большое количество донорной ДНК, причем одна реципиентная клетка может включать несколько разных молекул донорной ДНК в один геномный сайт. Этот феномен позволяет выделять компетентные субпопуляции из общей массы реципиентных клеток и маркировать геном млекопитающих. Если донорная ДНК смешана с плазмидной, кодирующей селективный для клеток млекопитающих маркер, селекция по плазмидному гену после трансфекции позволяет выделить популяцию трансфицированных клеток. Такое обогащение облегчает дальнейшую очистку реципиентных клеток. Этот прием оказался успешным при клонировании генов, кодирующих клеточные поверхностные антигены. В данном случае для обогащения использовали антитела, а для разделения субпопуляций клеток флуоресцентный сортер.
В реципиентных клетках ДНК плазмиды, содержащей селективный маркер, лигируется с донорной геномной ДНК. Это приводит к «маркированию» последовательности ДНК клетки млекопитающего и может упростить выделение донорного гена после нескольких повторных трансфекции.
В опытах по котрансфекции мы использовали смесь из 1 мкг плазмидной и 20 мкг геномной ДНК. Смесь готовили непосредственно перед добавлением хлорида кальция.