Учебное пособие: Моделювання технологічних процесів в рибництві

Прогноз величини БСК і вмісту розчиненого кисню в поверхневих водах, як правило, проводиться на основі математичної моделі Стріттера-Фелпса (1925). У загальному випадку система рівнянь Стріттера-Фелпса для турбулентного потоку записується у виді:

(6)

Тут c1 – концентрація органічної речовини;

c2 – концентрація розчиненого кисню;

k1 – константа швидкості біохімічного окислення;

k2 – коефіцієнт аерації, що залежить від температури;

c2* - концентрація насиченого кисню.

Систему можна розв’язати одним з числових методів.

Аналіз розв'язку системи показує, що при відсутності алохтонного надходження органічних речовин в результаті процесу самоочищення вміст кисню у воді виходить на рівень насичення. Якщо у водний об'єкт надходять органічні речовини, то дефіцит кисню збільшується. При великому надходженні органічних речовин розчинений кисень цілком витрачається на біохімічне окислення органічних речовин і вміст його у воді наближається до нуля.

Багатокомпонентні моделі якості води

Багатокомпонентні моделі якості води використовують для прогнозу вмісту у водоймах речовин, пов'язаних між собою процесами взаємної трансформації. Зокрема, в основі кругообігу азоту, фосфору, вуглецю лежать процеси взаємної трансформації речовин, і з цим явищем тісно пов'язаний процес евтрофування водних об'єктів.

Одним з основних циклів взаємної трансформації речовин у водному об'єкті є кругообіг азоту - одного з головних біогенних елементів. В основі трансформації з'єднань азоту у водному середовищі лежить процес нітрифікації. Нітрифікація являє собою процес окислення мінеральних форм азоту і здійснюється в дві стадії. На першій стадії відбувається окислення амонійних форм азоту до нітритних, на другій стадії нітритні форми окислюються до нітратних.

Короткостроковий прогноз (до 4 діб) вмісту у водному об'єкті мінеральних форм азоту з урахуванням процесу нітрифікації в умовах турбулентного потоку провадиться на основі математичної моделі Харлемана. Ця модель має вид:

(7)


де D - коефіцієнт поздовжньої дисперсії, м2/с; v - швидкість потоку, м/с; N1, N2, N3 - концентрації азоту амонійного, нітритного і нітратного відповідно, г/м3; k1, k2 - коефіцієнти трансформації амонійної і нітритної форм азоту, 1/с.

Аналіз розв’язку системи показує, що по завершенні процесу нітрифікації весь азот переходить у нітратну форму. При цьому вміст азоту амонійного у воді постійно зменшується, а азоту нітратного збільшується. Інша картина спостерігається для проміжної, нітритної форми азоту. У процесі нітрифікації вміст азоту нітритного спочатку збільшується, а потім знижується до нуля. Максимум вмісту нітритного азоту може істотно перевищувати його гранично допустиму концентрацію, навіть у випадку відсутності його у водному об'єкті до початку процесу нітрифікації.

Для проведення середньострокових і довгострокових прогнозів використовують моделі Міхаеліса-Ментен-Моно. В процесі нітрифікації мінеральні форми азоту виконують роль субстратів для нітрифікуючих бактерій. Система рівнянь має наступнийвигляд:

(8)

Тут X1, X2 – густина біомаси бактерій 1-го і 2-го виду; mmax1, mmax2 – максимальні швидкості росту бактерій; y1,y2 - коефіцієнти урожайності (збільшення біомаси бактерій за рахунок споживання одиниці субстрату); ks1,ks2 - константи напівнасичення (концентрація субстрату, при якій швидкість росту біомаси дорівнює половині максимальної); kd1,kd2 - коефіцієнти смертності.

Ця система диференціальних рівнянь не має аналітичного розв'язку і розв'язується чисельними методами. Дана модель використовується для прогнозу на період до 10 діб. При прогнозуванні на більш тривалий період використовують більш складні моделі, які враховують процеси мінералізації органічних форм азоту, роль фіто- і зоопланктону в колообігу азоту у водній екосистемі.

Модель управлiння водосховищем

Для рiзних господарських потреб необхiдно утворити певний запас прiсної води i управляти цим запасом так, щоб найкращим чином задовольняти потреби у прiснiй водi. Цей запас створюється у водосховищі. Перш за все необхідно визначити оптимальний об’єм водосховища W. При малому вмісті водосховище не зможе оптимально управляти запасом води. Видiлимо фактори, якi впливають на величину запасу води Y.

Приток води по рiчцi (включаючи боковий) - Р.

Випадання опадiв - O.

Випаровування з поверхнi водосховища - V.

Фiльтрацiя води у нижньому створi водосховища - F.

Частина води витрачається на фактори антропогенного походження – сільске господарство комунальне господарство - S.

При повному заповненні басейну водосховища відбувається сток води через греблю – H.

Запас води у водосховищі не може бути меншим деякої мiнiмальної величини хmin, і не може перевищувати об’єму водосховища W. Розподiл води мiж споживачами здiйснюеться пропорцiйно до їх запитів Sсх i Sкг (Sсх + Sкг = S). Необхiдно з’ясувати, як змiнюються з часом фактори, що впливають на величину запасу води х. Цi залежностi виясняють на основi природнiх спостережень.

К-во Просмотров: 304
Бесплатно скачать Учебное пособие: Моделювання технологічних процесів в рибництві