Учебное пособие: Основні закони динаміки
або в координатній формі:
(2.23)
(2.22) та (2.23) називають перетвореннями Галілея. Крім припущення про абсолютність часу тут використано також припущення про абсолютність довжин: в рiвняннi і вимірюються в різних СВ S i S´. Ці припущення справедливі лише при u << c. При u ≈ c перетворення Галілея повинні бути замiненi більш загальними перетвореннями Лоренца, якi будуть розглянуть пiзнiше.
Візьмемо похідну вiд (2.22) по часу:
(2.24)
(2.24) - це класичний закон додавання швидкостей :
Під час розв`язування задач доводиться розглядати рух тiл відносно різних СВ. При цьому ми будемо користуватися принципом незалежності рухiв, згiдно якому рухи даного тiла відносно різних СВ не залежать один вiд одного. Як приклад можна навести рух тiл, одне з яких кинуто горизонтально, а друге вільно падає без початкової швидкості (див. рис. 2.6).
Візьмемо похідну вiд (2.24) по часу (врахуємо, що ):
тобто: (2.25)
Отже, прискорення якого-небудь тiла в усіх СВ, які рухаються одна відносно іншої прямолiнiйно i рiвномiрно, одне й те ж. Тому якщо одна із систем iнерцiальна, то й iншi також будуть IСВ. Про рiвнiсть (2.25) говорять, що прискорення iнварiантне відносно перетворень Галілея. Можна показати, що сила є функцією тільки iнварiантних величин - рiзницi координат i рiзницi швидкостей точок, що взаємодіють одна з одною. З цієї причини сила також iнварiантна відносно перетворень Галілея.
Тому рівняння другого закону Ньютона в ІСВ S´ має такий же вид, як i в S:
Рівняння механіки Ньютона iнварiантнi відносно перетворень Галілея.
Це твердження називається принципом вiдносностi Галілея.
Іншими словами він звучить так:
всі механiчнi явища в різних IСВ відбуваються однаково, внаслiдок чого ніякими механічними дослідами неможливо встановити, чи нерухома дана СВ, чи вона рухається рiвномiрно i прямолiнiйно.