Учебное пособие: Основы дискретной математики

1.2.1 Основные понятия

Существуют различные алгоритмы сортировки данных. И понятно, что не существует универсального, наилучшего во всех отношениях алгоритма сортировки. Эффективность алгоритма зависит от множества факторов, среди которых можно выделить основные:

– числа сортируемых элементов;

– степени начальной отсортированности (диапазона и распределения значений сортируемых элементов);

– необходимости исключения или добавления элементов;

– доступа к сортируемым элементам (прямого или последовательного). Принципиальным для выбора метода сортировки является последний фактор [16].

Если данные могут быть расположены в оперативной памяти, то к любому элементу возможен прямой доступ. Удобной структурой данных в этом случае выступает массив сортируемых элементов. Если данные размещены на внешнем носителе в файле последовательного доступа, то к ним можно обращаться последовательно. В качестве структуры подобных данных можно взять файловый тип [9].

В этой связи выделяют сортировку двух классов объектов: массивов (внутренняя сортировка) и файлов (внешняя сортировка).

Процедура сортировки предполагает, что при наличии некоторой упорядочивающей функции F расположение элементов исходного множества меняется таким образом, что

,

где знак неравенства понимается в смысле того порядка, который установлен в сортируемом множестве.

Поиск и сортировка являются классическими задачами теории обработки данных, решают эти задачи с помощью множества различных алгоритмов. Рассмотрим наиболее популярные из них.

1.2.2 Поиск

Для определенности примем, что множество, в котором осуществляется поиск, задано как массив:

var a: array [0..N] of item;

где item – заданный структурированный тип данных, обладающий хотя бы одним полем (ключом), по которому необходимо проводить поиск.

Результатом поиска, как правило, служит элемент массива, равный эталону, или отсутствие такового.

Важно знать и про ассоциативную память. Это можно понимать как деление памяти на порции (называемые записями), и с каждой записью ассоциируется ключ. Ключ – это значение из некоторого вполне упорядоченного множества, а записи могут иметь произвольную природу и различные параметры. Доступ к данным осуществляется по значению ключа, которое обычно выбирается простым, компактным и удобным для работы.

Дерево сортировки – бинарное дерево, каждый узел которого содержит ключ и обладает следующим свойством: значения ключа во всех узлах левого поддерева меньше, а во всех узлах правого поддерева больше, чем значение ключа в узле.

Таблица расстановки.

Поиск, вставка и удаление, как известно, – основные операции при работе с данными [16]. Мы начнем с исследования того, как эти операции реализуются над самыми известными объектами – массивами и (связанными) списками.

Массивы

На рисунке 1.1 показан массив из семи элементов с числовыми значениями. Чтобы найти в нем нужное нам число, мы можем использовать линейный поиск (процедура представлена на псевдокоде, подобном языку Паскаль):

int function SequentialSearch (Array A, int Lb, int Ub, int Key);

begin

for i = Lb to Ub do

if A (i) = Key then

return i;

К-во Просмотров: 498
Бесплатно скачать Учебное пособие: Основы дискретной математики